Как устроен двигатель автомобиля
Какой бы ни был высокотехнологичный и современный автомобиль, сам ехать он не может. Только с горки, и то не с каждой. Как ни странно, первым претендентом на роль движущей силы в автомобиле выступило электричество. Причем настолько успешно, что электромобили уверенно лидировали и по техническим показателям, и по удобству в эксплуатации. Более того, первый рекорд скорости на суше принадлежит именно электромобилю. В 1899 году рыжим бельгийцем Камилем Жентаци был установлен абсолютный рекорд скорости в 105,7 км/ч. Так что если бы не нефтяные магнаты, ездили бы мы на электромобилях.
https://youtube.com/watch?v=ilZyCD-QlJg
Тем не менее, история распорядилась по-другому. Двигатель внутреннего сгорания вытеснил бесшумный и динамичный электромотор. Современный автомобильный двигатель внутреннего сгорания — это преобразователь энергии химической реакции сгорания топлива в механическую энергию, благодаря которой автомобиль может двигаться. Бензин и дизельное топливо — два основных источника энергии для автомобиля. Топливо сгорает в камере сгорания, приводя в движение поршни. Возвратно-поступательное движение поршня преобразуется во вращение коленчатого вала, а дальше — дело техники. Осталось заставить колеса крутиться, но об этом позже.
Двигатель во время работы выделяет слишком много тепла, поэтому металл, из которого он сделан, может потерять свои свои свойства. Для того, чтобы мотор не расплавился во время работы, придумали систему охлаждения. Она устроена таким образом, что двигатель или обдувается встречным воздухом, тогда такая система называется воздушной, или охлаждается жидкостью. В этом случае систему называют жидкостной. Жидкостная система охлаждения более эффективна, но несравнимо сложнее воздушной. Радиатор — главный герой этой системы и он всегда на виду. Вплоть до середины ХХ века пробки радиаторов выполняли в виде логотипов фирм-производителей или устанавливали логотипы прямо на решетке радиатора, что и делают до сих пор.
Для того, чтобы двигатель не плавился от работы, была придумана система охлаждения
Система питания автомобильного двигателя обеспечивает подачу горючего в камеры сгорания, дозирует его и смешивает с воздухом. Этим непростым делом занимаются карбюраторы или форсунки. Сейчас на легковых автомобилях наиболее распространены бензиновые двигатели с впрыском топлива. На грузовых машинах продолжают устанавливать дизельные двигатели. Но это не значит, что дизелей нет на легковых машинах. Технологии последних 30 лет позволили сделать дизельный мотор не менее экономичным и компактным, чем бензиновый, поэтому каждая модель легкового автомобиля, как правило, имеет дизельную модификацию.
Для того, чтобы топливо загорелось, кто-то должен его поджечь. Это не касается дизельных моторов, потому что там солярка загорается автоматически, под давлением, и в этом дизельный мотор в какой-то степени проще. В бензиновых моторах все обстоит совсем по-другому. Поджечь топливо, как оказалось, целая история. Причем поджечь его вовремя. Этим и занимается система зажигания. Бензиновый мотор работает корректно только тогда, когда искра подается в камеру сгорания в строго определенный момент. Сложность состоит в том, что для образования искры необходимо несколько тысяч вольт напряжения. Но и с этим инженеры справились остроумно — кратковременные высоковольтные импульсы вырабатывает маленькая электростанция — катушка зажигания. А распределяет ток высокого напряжения по цилиндрам распределитель — трамблер. Для образования искры под воздействием импульса высокого напряжения служат свечи зажигания.
https://youtube.com/watch?v=BGgn_ich0NA
В принципе, мотор, который мы только что придумали, уже может крутиться, но шуметь он будет так, что нас выселят из города. Именно по этой причине и был изобретен глушитель — подавитель звуков, которыми грешит мотор при работе. В каждом из цилиндров происходят взрывы топлива по сто раз в секунду. Естественно, что слушать такую канонаду приятно не каждому, да и вредно это, по правде говоря. Вежливые парни из гаража Панар-Левассор еще в начале века пытались предотвратить конфликтные ситуации с горожанами, поэтому прикрутили к своему грохочущему автомобилю кусок трубы. С развитием автомобиля развивался и глушитель. Пик эволюции глушителей звука двигателей пришелся на середину ХХ века. Тогда, благодаря стараниям инженеров Шевроле, добились практически бесшумного выхлопа. Да и сегодня появляются всякие катализаторы и лямбда-зонды для уменьшения уровня шума и выброса вредных газов.
Краткий обзор видов КПП
КПП или коробка передач – это одна из основных частей трансмиссии автомобиля. В основном КПП принято делить на три типа, а именно:
• Механическая коробка передач. Принцип ее работы заключается в том, что водитель с помощью рычага переключает передачи, при этом постоянно следит за нагрузкой двигателя и скоростью автомобиля;
• Автоматическая коробка передач исключает необходимость постоянно следить за скоростью и нагрузкой, так же не нужно постоянно пользоваться рычагом;
• Роботизированная коробка передач – это полуавтоматический вид коробки передач, которая комбинирует свойства механической и автоматической коробки передач.
На самом деле видов и подвидов КПП гораздо больше. Так, различают Tiptronic(основа – автоматическая КПП с ручным переключателем скоростей), DSG( оборудована 2 сцеплениями, имеет автоматический привод переключения и представляет собой 6ти ступенчатую КПП) и вариатор ( бесступенчатая трансмиссия).
Как работает синхронный двигатель
Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.
При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.
При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.
Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.
Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.
Рычаг.
Это жесткий стержень, который может свободно поворачиваться относительно неподвижной точки, называемой точкой опоры. Примером рычага могут служить лом, молоток с расщепом, тачка, метла.
Рычаги бывают трех родов, различающихся взаимным расположением точек приложения нагрузки и усилия и точки опоры (рис. 1). Идеальный выигрыш в силе рычага равен отношению расстояния DE
от точки приложения усилия до точки опоры к расстояниюDL от точки приложения нагрузки до точки опоры. Для рычага I рода расстояниеDE обычно большеDL , а поэтому идеальный выигрыш в силе больше 1. Для рычага II рода идеальный выигрыш в силе тоже больше единицы. Что же касается рычага III рода, то величинаDE для него меньшеDL , а стало быть, больше единицы выигрыш в скорости.
Обкатка и испытания
Финальным этапом капитального ремонта двигателя становиться его обкатка и испытание. Лучший способ обкатать двигатель — это комбинированный, о котором мы писали в одной из статей. Для наиболее эффективной работы силового агрегата, необходимо его обкатывать, как на горячую, так и на холодную.
Во многих иностранных странах, помимо обкаточного стенда, существует испытательный стенд, который при помощи большого количества датчиков и показателей проводит испытание двигателя и определения ресурса после проведения ремонтно-восстановительных работ. К сожалению, на территории СНГ таких стендов нет, поскольку считается, что их использование экономически нецелесообразно.
Ходовая часть
ХЧ – это, собственно говоря, колеса автомобиля, элементы подвески колес и рулевое управление.
Дорога никогда не бывает абсолютно ровной. Поэтому колеса крепятся к кузову с помощью упругих элементов – рессор или пружин, которые смягчают удары на кузов при неровностях на дороге.
Колебания, возникающие в этих элементах, гасят амортизаторы. Устойчивость колес относительно кузова обеспечивает специальная система рычагов-стабилизаторов. Задачей рулевого управления в автомобиле становится изменение траектории движения авто на дороге. Состоит из рулевого колеса, рулевой колонки и системы рулевых тяг. Тяги и поворачиваю управляемые колеса при вращении рулевого колеса.
Установка нового седла
Седло клапана правильно устанавливать с азотом, все другие методы не такие надёжные. В нормальном состоянии при комнатной температуре дивметр седла больше диаметра отверстия в головке, поэтому после установки получается некоторый натяг. Чтобы засунуть седло, его надо уменьшить в размере, для этого и нужен азот.
Азот в жидком состоянии сохраняет очень низкую температуру. Охлаждаясь в азоте, клапан сжимается в диаметре, и охладившись может свободно залезть в посадочное отверстие головки. В то же время, чтобы увеличить посадочное отверстие в головке, головку можно нагреть, тогда отверстие расширится и зазор увеличится. Если нагреть головку, то тогда не надо так сильно охлаждать седло, достаточно будет просто положить в морозилку и разницы температур будет достаточно.
Устанавливать седло без предварительной термической обработки нельзя, не будет достигнут необходимый натяг и седло выпадет в процессе эксплуатации.
При установке нужно забить седло, чтобы оно стало на место, сильно бить не надо, достаточно лёгких ударов.
Ремонт смазочной системы
Из-за износа шеек коленчатого вала и вкладышей подшипников увеличивается радиальный зазор вала, поэтому через сальники вала течет масло. Под сальником неравномерно изнашивается поверхность колен вала. Течь масла в этом случае не устраняется, и сальник меняется на новый. Под сальником восстанавливается геометрическая конфигурация шейки. Под сальник на шейку коленвала наносят микрорельеф винтовой линии, он и направляет масло, попавшее на вал, обратно в картер.
Нужно взять наждачную бумагу, чтобы у нее была средняя зернистость и прижимают ее к шейке пальцем. В направлении вращения проворачивают вал и наждачную бумагу в это же время передвигают в направлении картера, за оборот вала на 1 мм. На шейке появляются микрорельефы винтовой линии. Потом поверхность полируется войлоком, предварительно смоченным маслом. Установлено, что от этого у сальника увеличивается работоспособность и уплотняется узел. Если подтекает самоподвижный сальник и не повреждена уплотняющая кромка, то на несколько витков укорачивается спиральная пружина сальника.
Если течет масло, то передний сальник коленвала двигателя меняют на новый, без специальных приспособлений и без разборки двигателя. Снимается центробежный масляный фильтр и из крышки распределительных шестерен вынимают изношенный сальник. Потом надевают масляный фильтр на хвостовик корпуса, и новый сальник становится в рабочем положении. После чего заворачивают болт, запрессовывают сальник в гнездо и снимают старый сальник с хвостовика.
Часто из-под уплотнителей кожухов штанг двигателя появляется течь. Если для замены нет новых уплотнителей, то делают лопатку с вырезом 160. При помощи ее от резинового уплотнителя отжимают шайбу. Наматывают на кожух четыре витка капронового шпагата толщиной 1,5 мм. Шпагат деформируется под действием пружины, так устраняется течь масла.
Изготавливают металлические шайбы 161 и поверх их устанавливают резиновые уплотнители, предварительно с них срезаются армирующие кольца. После чего металлическая шайба разжимает резину и тем самым уплотняется соединение.
На уплотняющие прокладки наносят герметизирующую мастику. Чтобы ее изготовить в нитроэмаль добавляют 10% касторового масла. Через несколько суток из смеси испаряется растворитель. Чтобы ускорить испарения, посуда помещается в ванну с горячей водой. Нельзя применять открытый огонь.
Когда внезапно исчезает давление масла, то, скорее всего, сломался привод масляного насоса. Если пуск двигателя произошел в холодное время года, то причина — густое масло либо в масле находится замерзшая капля воды, находящаяся между шестернями насоса. Если лампочка горит, то она сигнализирует о том, что отсутствует давление масла, двигатель останавливают.
У двигателя снимают распределитель и двумя отвертками через отверстие вынимают приводную шестерню. Часто изнашиваются шлицы, которые соединяют насос с шестерней. Чтобы водителю добраться до масляного насоса, снимают поддон картера. Для этого следует отвернуть 2 гайки крепления на левой опоре двигателя. С помощью домкрата поднять эту сторону авто и подвести подходящую опору под картер сцепления. Опускают авто и над поперечиной подвески поднимается поддон картера. Нужно отвернуть винты крепления поддона и отрыть от картера, при этом стараются, чтобы уплотнительная прокладка была не сорвана.
Коленвал проворачивают в положение, когда противовесы располагают горизонтально. При необходимости поднимают монтажной лопаткой переднюю часть двигателя. Потом поддон картера убирают.
Привод насоса ремонтируют несколькими способами. В 1-м случае на шлицованных поверхностях шестерни и валика делают пропилы и туда устанавливается сухарик из прочной стали. Он должен быть 17Х17Х2 мм.
Во 2-м случае нарезают резьбу в износившемся отверстии хвостовика шестерни, куда заворачивают стальную вставку, внутри которой сделано шестигранное или квадратное отверстие. Под это отверстие обрабатывают конец валика насоса.
Когда насос долго находится в работе, снижается его производительность и давление, тогда проверяется износ деталей. Прежде чем снять шестерни насоса, размечают, чтобы соединить их потом в прежнем положении. В зацеплении замеряют зазор, он должен быть не более 0,25 мм. Изношенные шестерни меняют на новые. При необходимости корпус восстанавливают эпоксидным клеем, зазор между плоскостью разъема и торцами шестерен должен быть не больше 0,15 мм. Подлежат замене изношенные детали.
Со стороны шестерен на крышке образовываются круговые углубления. Их устраняют при помощи шлифовки на абразивном круге или на абразивной бумаге, которую кладут на стекло. При сборке детали насоса тщательно очищают от абразива и грязи.
Источник
Ремонт головки блока
Ремонт головки блока одна из самых несложных операций в процессе проведения капитального ремонта двигателя. Проводить ее рекомендуется, конечно, на автосервисе, но многие автомобилисты, после ремонтных операций по Жигулям, проводят ремонт ГБЦ иномарок самостоятельно. Итак, что же входит в процесс капитального ремонта головки блоки цилиндров:
- Замена распределительного вала (или нескольких, если их 2 и более на автомобиле).
- Замена клапанов, как выпускных, так и впускных.
- Замену направляющих втулок.
- Смену седел и маслосъемных колпачков.
- Аргонное сваривание, при наличии трещин или нарушений герметичности.
- Прочие работы связанные с ремонтом ГБЦ того, или иного типа.
Разборка и сборка силового агрегата
Для полной разборки двигатель придется снимать. Можно сделать это сразу, а можно уже после того, как будет снята головка блока цилиндров. Для снятия понадобится ручная лебедка и прочная опора (например, балка) на которую ее можно подвесить. Съемка мотора также занимает несколько часов.
В каком порядке происходит разборка мотора: основные этапы
Разборка и сборка двигателя в общих чертах проходит почти всегда одинаково. Возможны некоторые расхождения в деталях в зависимости от марки и модели. Далее предлагается порядок действий на снятом силовом агрегате.
- Отсоединяется коробка передач. В этом нет ничего особо сложного, так как она крепится при помощи болтов. Удобнее всего снимать ее после демонтажа двигателя, однако можно отделить узел и раньше. При этом при установке мотора на свое место возможны трудности.
- Отсоединяется сцепление. Для этого откручиваются болты, крепящие кожух сцепления, после чего снимается весь узел.
- Теперь нужно снять приводной шкив коленчатого вала. Для этого потребуется крепкая плоская отвертка и гаечный ключи подходящего размера (лучше иметь еще и газовый ключ). Вначале необходимо зафиксировать коленвал. Для этого при помощи отвертки стопорится маховик. Чтобы это сделать, нужно в отверстие крепления сцепления ввернуть болт, отвертку вставить между зубцами маховика и упереть в болт.
- Газовым ключом (или рожковым соответствующего номера) откручивается гайка (на некоторых автомобилях это храповик). После этого чем-то подходящим (это может быть баллонный ключ) для функций рычага поддевается шкив и снимается со своего места. Теперь откручиваются болты, фиксирующие маховик, после чего эта деталь снимается. Под ним имеется пластина, удерживаемая болтами. Ее также нужно снять.
- Снимается ремень или цепь ГРМ с распределительного вала, если предварительно не снималась головка блока цилиндров. В некоторых автомобилях чтобы добраться до ремня или цепи ГРМ нужно сначала демонтировать крышку клапанов (она же крышка ГБЦ). Она крепится при помощи гаек на шпильках или на болтах. Под крышкой имеется прокладка, которую можно сохранить и в случае пригодности использовать повторно.
Для снятия ремня (цепи) предварительно необходимо ослабить саму цепь, вынув натяжитель. Далее предстоит демонтировать шестеренку распределительного вала. Эта деталь фиксируется болтом. Но кроме подходящего по размеру ключа здесь понадобится (во всяком случае, на отечественных двигателях) мощная плоская отвертка или зубило, а также молоток. При помощи этих инструментов отгибается стопорная пластина, которая не позволяет болту самопроизвольно раскручиваться.
Когда шестеренка будет снята, снимается цепь и можно приступать к снятию шестеренки коленчатого вала. Здесь лучше иметь специальный съемник, так как без него, возможно, придется повозиться. Эта деталь на валу фиксируется шпонкой, которая может довольно плотно сидеть в пазу. Если в процессе выемки шпонки ее края были несколько деформированы, то подправить их можно напильником. Последняя процедура на данном этапе – снятие башмака натяжителя цепи. С этим никаких проблем возникнуть не должно.
6. Демонтаж распределительного вала. Для этого нужно открутить гайки (они на шпильках), которые фиксируют кожух распредвала и вынуть сам вал.
С чего начать
Многие автомобилисты задаются вопросом — с чего начать ремонт бензиновых двигателей? Ответ достаточно прост — необходимо определить признаки: а вообще необходим ли ремонт узла, или проблема кроется в чем-то другом? Для этого придется провести ряд диагностических процедур. Они делятся на 2 типа: электронные и механические.
Электронная диагностика может показать необходим ли ремонт авто в части электроники и есть ли вообще проблемы. Для этого проводится проверка электронного блока управления двигателем, а также состояние всех датчиков и соединений. Если проблемы не выявлено, то не стоит и лезть далее, поскольку можно создать проблему, которую придется решать.
Механическая диагностика потребует много времени, сил и знаний. Для проведения этой операции, в интернете есть инструкция, но в этой статье постараемся объяснить все намного детальнее и понятнее. Если в процессе проведения диагностических операций были обнаружены проблемы, то придется разбирать и проводить ремонт бензиновых двигателей.
Кстати для этого есть руководство по ремонту двигателя, которое выпускает завод изготовитель, как в бумажном, так и в электронном виде. Итак, рассмотрим процесс ремонта машины, а точнее ее силового агрегата более детально.
Основные неисправности коленчатого вала двигателя
Поломка коленчатого вала. Причины выхода из строя. Ремонт коленвала.
Коленчатый вал силового агрегата постоянно находится под высокими нагрузками, вследствие чего он является одной из самых уязвимых деталей, восстановление которой занимает много времени и стоит недешево.
На коленвал постоянно воздействуют различные силы, начиная от высокого давления газов, которое вызвано работой поршневой группы, неправильными условиями эксплуатации автомобильного двигателя и заканчивая постоянно возникающим большим уровнем инерции. Заметим, что коленчатый вал относится к элементам, которым постоянно приходится испытывать всю силу циклических нагрузок, негативно отражающихся на целостности материала изготовления и значительно снижающих его прочность.
Особенности восстановления работоспособности коленвалов
Зачастую причиной выхода коленвала из строя является недостаточный уровень моторного масла, его неудовлетворительное состояние, продолжительная работа непрогретого силового агрегата на максимальных оборотах. Среди основных повреждений выделяют наличие задиров на шейках вала, износ подшипников, присутствие серьезной выработки на поверхности, расплавление вкладышей вследствие их постоянного перегрева.
Устранить задиры можно, отшлифовав шейки коленчатого вала. При этом для этой процедуры существует несколько ремонтных размеров. Однако в процессе шлифовки возникает более серьезная проблема, которая связана с нагревом поверхности шейки, и снижением в связи с этим ее прочности. В результате разогрева сторон шеек нарушается геометрия коленвала — он искривляется, что может привести к его заклиниванию либо серьезному повреждению. В таком случае полностью восстановить вал вряд ли удастся, потребуется его замена.
Увы, но шлифовка является распространенной практикой ремонта коленчатого вала. Ошибочно мнение большинства даже самых опытных мотористов и автомехаников, что после ее проведения полностью восстановятся все характеристики детали, и она может продолжать работать, как и прежде
При этом нарушение геометрии детали можно попросту не принимать во внимание. В результате получается, что и распредвал начинает функционировать некорректно, увеличивается износ деталей ГРМ, нарушается герметичность сальников, изгиб шеек приводит к повреждению и выработки их посадочных мест, силовой агрегат начинает сильно вибрировать, значительно увеличивается потребление топлива
Нетрудно подсчитать центробежную силу, возникающую при вращении коленчатого вала силового агрегата со средними характеристиками (мощность, объем и т. д.). Эта цифра никогда не была маленькой. Ее среднее значение 8кН. Даже, несмотря на эту величину, единственным применяемым методом восстановления коленчатого валя, к сожалению, все равно является его шлифовка.
Характерные неисправности коленчатого вала
К наиболее распространенным из них относятся:
- нарушение геометрии коленвала;
- наличие деформаций (сколов, вмятин, царапин и т. д.) на поверхности вала;
- разбалансировка коленчатого вала, которая зачастую вызвана его искривлением;
- выработка отверстий масляных каналов, их засорение и прочие повреждения;
- пригорание вкладыша вследствие перегрева коленвала. (на различных типах автотранспорта эта неисправность характеризуется по-разному: на легковых авто на коленвале появляются задиры, а на грузовой технике ввиду повышенных нагрузок вкладыш пригорает моментально).
Все эти неисправности вызывают повышенный износ, как самого коленчатого вала, так и других элементов силового агрегата.
Главное – это соблюдение всех рекомендаций производителя, которые указаны в сервисной книге автомобиля. Основной критерий продолжительной работоспособности этого элемента — своевременная замена моторного масла в соответствии с его типом и спецификацией.
Необходимо подчеркнуть, что в сервисных книгах автопроизводители указывают регламентные сроки проведения ТО и замены расходников, которые не соответствуют особенностям эксплуатации транспортных средств в нашей стране. Поэтому, необходимо самостоятельно несколько занизить эти сроки либо брать в расчет рекомендации «для тяжелых условий эксплуатации».
Автомобильный кузов
Основа конструкции любого авто, что определяет его форму, размер, потенциальные скоростные характеристики – кузов. Он нумеруется на заводе при изготовлении, этот номер в определенном месте наносится на кузов методом теснения. Номер кузова, как и заводской номер автомобиля, являются основными в сопроводительных документах на автомобиль, а так же вносятся в регистрационный документ при регистрации в органах ГАИ.
Кузов изготавливается из специальных сортов листовой стали. Он должен обладать достаточной прочностью и жесткостью, чтобы не потерять форму при воздействии довольно значительных механических воздействий. В необходимых местах кузов имеет элементы усиления конструкции из более толстого металла.
Кроме того, металл кузова должен быть достаточно устойчивым против коррозии. На заводе кузов проходит специальную химическую обработку против следов коррозии. После этого он грунтуется специальной грунтовкой и красится высокопрочной автоэмалью. От качества выполнения этих работ, а также надлежащего ухода зависит срок службы кузова, а, следовательно, и всего автомобиля. К элементам кузова относятся двери, крышка моторного отделения и крышка багажника, а еще – остекление автомобиля.
Базовые части двигателя
Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун. Металлическую основу мотора, остов называют блоком
Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем
Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.
Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже. Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок
Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки
Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.
Цилиндр
Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.
Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:
- Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
- Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
- Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.
Цилиндр играет роль направляющего для поршня.
Поршень, поршневые кольца и шатун
Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.
В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.
Среди задач поршня:
- Оказание силового воздействия на шатун.
- Отвод тепла от камеры сгорания.
- Герметизация камеры сгорания.
Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.
Коленчатый вал
Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.