Исследовательская работа по экологии на тему: «влияние выхлопных газов на окружающую среду и организм человека»

Как работает?

Рассмотрим принцип работы турбонаддува подробнее. Система функционирует на энергии отработанных газов. Они вращают турбинное колесо, которое, в свою очередь, крутит компрессорное. Оно сжимает воздух, а затем он охлаждается в интеркулере и переходит в цилиндры «движка».

Эффективность функционирования системы зависит от оборотов мотора. Получается, что чем больше происходит вращения коленвала, тем больше энергия газов, быстрее крутится турбина и большое количество сжатого воздуха уходит в цилиндры.

У турбонаддува есть некоторые отрицательные «стороны». К ним относят «турбояму» и «турбоподхват». Первый возникает при резком «старте» при задержке увеличения мощности «движка». Второй появляется при увеличении давления после преодоления турбоямы.

Если водитель знает, как функционирует классический двигатель внутреннего сгорания, то ему не составит труда разобраться в процессе подачи дополнительного воздуха в цилиндры. Получается, что при включении турбонаддува происходит увеличение мощности мотора при стандартных объемах.

Устройство и принцип работы

Турбокомпаунд преобразует энергию, которая в противном случае и ушла бы в атмосферу, в работу за счет силовой турбины, приводимой в действие выхлопными газами. Это типичный пример утилизации остаточной энергии отработавших газов.

Устройство турбокомпаундного двигателя «Scania»

Турбокомпаундный двигатель – это частный случай компаундного двигателя. В последнем дополнительная работа извлекается при расширении отработавших газов в цилиндре низкого давления.

Как правило, современный дизель уже включает две турбины. Это газовая и компрессорная (по сути, центробежный компрессор) турбины турбонаддува посаженные на один вал. При компаундировании двигателя добавляется третья – силовая турбина (компаунда). Она также вращается отработавшими газами со скоростью до 55000 об/мин. Чтобы передать такое быстрое вращательное движение на коленчатый вал, создавав тем самым полезную прибавку крутящего момента, необходимо уменьшить скорость вращения до примерно 2000 об/мин за счет шестерней и гидромуфты. Гидравлическая муфта не увеличивает передаваемый момент, но ее пробуксовка позволяет плавно согласовать различные частоты вращения (при их резком изменении) маховика и силовой турбины.

Схема работы турбокомпаундного двигателя

Рассмотрим, как работает турбокомпаундный двигатель:

  1. Выхлопные газы с температурой 600 – 700 °C поступают в газовую турбину наддува, раскручивая её до 55000 – 100000 об/мин.
  2. Газовая турбина через вал передает вращение на центробежный компрессор туробонаддува, который нагнетает воздух во впускной трубопровод для приготовления горючей смеси.
  3. Выхлопные газы покидают турбонаддув, потеряв там около 100 °C.
  4. Отработавшие газы, сохраняя высокую температуру, поступают в силовую турбину турбокомпаунда, раскручивая её примерно до 55000 об/мин.
  5. Вращение силовой турбины передается через понижающую передачу и гидравлическую муфту на коленчатый вал и маховик двигателя.
  6. Температура газов на выходе из турбокомпаунда также снижается примерно на 100 °C.
    Выхлопные газы отводятся через выпускную систему.

Как все работает

  1. После сгорания топлива выхлопные газы покидают цилиндры двигателя через выхлопной коллектор с температурой в диапазоне 650 — 750 градусов.
  2. На первом этапе выхлопные газы вращают лопасти турбокомпрессора, про то, что при этом происходит мы писали выше.
  3. Покинув турбокомпрессор выхлопные газы через тормоз двигателя (так называемый горный тормоз) попадают в специальную силовую турбину, которая работает на скорости в 55 тыс. об. в минуту.
  4. Полученный вращательный момент через гидромуфту и систему понижающих редукторов поступает на коленвал двигателя, оттуда на маховик и коробку передач с частотой до 1900 – 2000 об в минуту.
  5. И только тогда выхлопные газы уходят в атмосферу.

Роль гидромуфты очень важна, так как благодаря ей происходи сглаживание изменение частот турбины турбокомпаунда и маховика.

Выбор энергопривода и повышение его энергоэффективности

Основными критериями научно и технически обоснованного выбора приводных систем для ГПА являются следующие:

  • высокая надежность и безаварийность с прогнозированием технического состояния , поскольку КС являются объектами повышенной опасности с большими ущербами от аварий;
  • энергосбережение при минимальных эксплуатационных затратах и расходах на техническое обслуживание и ремонт (ТОиР);
  • минимальное воздействие возможных выбросов на окружающую среду.

В качестве приводов ГПА на КС используются газовые турбины (стационарные, авиационные, судовые) или электроприводы с мегаваттными синхронными машинами. В настоящее время компрессорный парк ПАО «Газпром» имеет следующую статистику установленных мощностей типов приводов: газотурбинный (ГТУ) – 87,1% и электроприводной (ЭГПА) – 12,4 %.

Основными причинами массового применения ГТУ являются распространенность топлива при перекачивании природного газа, относительная дешевизна топлива (топливного газа) в сравнении с электроэнергией, большая вариативность типоразмеров ГТУ, включая модульные компоновки, достаточно низкая квалификация обслуживающего персонала. Но при этом ГТУ имеют ряд явных недостатков: низкий КПД (не выше 38%), зависимость от загрязненности и температуры воздуха и топлива, высокий уровень шума и вибраций, большое время запуска и низкая точность регулирования, большие габариты и стоимость строительства и ТОиР.

Однако главным недостатком ГТУ, влияющим на энергоемкость транспорта и себестоимость газа у потребителей, бесспорно, является низкий КПД. Топливная составляющая затрат природного газа на его транспортировку с применением ГТУ для ГПА составляет до 11–15%всего объема его добычи, что в годовом исчислении – более 74,47 млн. м3/год или по усредненным финансовым показателям около 59,7 млрд. $/год .

Применение современных ЭГПА в сочетании с комбинированными парогазовыми приводными ГПА, использующими новейшими технологии энергосбережению низкопотенциального тепла выхлопных газов позволит сэкономить на КС более 890 млн. $/год, улучшить экологию и снизить себестоимость транспортировки природного газа.

Замена моторного масла и масляного фильтра

Данная процедура относится с среднему уровню сложности и занимает примерно час времени у профессиональных водителей. Новичкам рекомендуется освоить эту операцию в самом начале своей «карьеры водителя». Это значительно сэкономит время и средства в дальнейшем.

Правильная процедура по замене моторного масла — это гарантия долгой жизни самого главного агрегата автомобиля – двигателя. Для замены потребуется простой инструмент и масло необходимой вязкости. Именно здесь кроется главная сложность для новичков — они не знают, какой класс вязкости и какой объем масла требуется для двигателя их машины.Поэтому сверка с инструкцией по эксплуатации авто обязательна. Из инструментов понадобятся:

  • Воронка (лейка).

Поддон или кювета для старого масла.

Ключ для масляного фильтра.

Фильтр.

Торцевой ключ.

Перед тем, как начинать замену, следует завести двигатель на пару минут, чтобы масло прогрелось. На поддоне картера расположена пробка сливного отверстия. Требуется ослабить пробку торцевым ключом, снять ее, дать стечь маслу и установить пробку обратно. Затем следует сменить фильтр и залить новую жидкость.

Состав выхлопных газов дизельных двигателей

Выхлопные газы дизельных двигателей представляют собой сложную смесь газообразных и твердых частиц, образующихся при сгорании дизельного топлива. Количество выбросов и состав выхлопных газов зависят, например, от типа, состояния и наличия технического обслуживания двигателя, состава и свойств топлива, а также применяемых методов последующей обработки выхлопных газов. Основными газообразными компонентами отработанных газов дизельного топлива являются диоксид углерода, кислород, азот, водяной пар, окиси азота и окись углерода. Кроме того, в газовой фазе могут выделяться диоксид серы и различные органические соединения, такие как низкомолекулярные карбонилы, карбоновые кислоты, алканы, алкены и ароматические вещества.

Помимо газов и паров, выхлопные газы содержат мельчайшие частицы, которые образуются в процессе сгорания и последующей конденсации соединений газовой фазы. Эти частицы состоят из элементарного углерода, адсорбированных органических соединений, сульфатов, нитратов и следов других элементов. Выхлопные частицы дизельного топлива легко вдыхаются. Благодаря небольшому размеру частицы могут достигать легочных альвеол, чувствительной газообменной области легких.

Известно, что использование биодизеля вместо или в смеси с ископаемым топливом может умеренно снизить выбросы частиц, суммарных углеводородов и окиси углерода, но в то же время выбросы оксидов азота часто увеличиваются. В целом, выхлопные газы биодизеля содержат меньше генотоксичных полициклических ароматических углеводородов, но больше раздражающих альдегидов и кетонов.

Почему форсунки «Скания» могут выйти из строя

Безупречное многократно подтверждённое качество грузовиков «Скания», деталей, из которых эта техника производится, не гарантируют тем не менее бесконечного их функционирования. Состояние тех же насос-форсунок в процессе использования зависит от применяемого масла и топлива.

Сейчас «Скания» снабжается двумя видами насос-форсунок:

  • Scania HPI – механическая насос-форсунка компании Cummins (HPI-инжектор высокого давления). Представляет из себя два актуатора (клапана) объёма топлива; два актуатора (клапана) опережения впрыска; сами насос-форсунки;
  • электронная насос-форсунка фирмы Bosh (PDE).

Если определены неисправности в работе этих деталей, рекомендуется первым делом обратиться в специализированные сервисы, которые обладают соответствующим оборудованием, так как в любой ситуации ремонт предваряется детальной диагностикой. В сервисах ее производят на специальном стенде. Все компоненты подвергаются испытанию при различных нагрузках двигателя. Подобную проверку целесообразно проводить регулярно, не доводя до поломок.

Электронные насос-форсунки «Скания» оснащаются механическими составляющими, которые, к сожалению, не застрахованы от естественного износа и повреждений. Самым уязвимым для поломок является клапанный узел, ведь он принимает на себя наибольшую нагрузку при функционировании двигателя. Также часто подвержен поломкам распылитель. Третье место в данном антирейтинге у электромагнитной части и плунжера. Редко, но случается, что ломается корпус, пружина.

Рекомендуем

Отметим, что большинство поломок не произошли бы при использовании хорошего топлива. Сама фирма «Скания» очень тщательно контролирует качество комплектующих деталей: так, размеры зазоров узлов электромагнитной части у них не превышают два микрона. Герметичность клапана могут нарушить механические частицы, содержащиеся в недостаточно качественном топливе (в высококачественном они ничтожно малы). Мощность двигателя при наличии повреждений и нарушении герметичности снижается, а расход топлива повышается. Процесс дефектовки позволяет определить повреждения, образовавшиеся от частиц некачественного топлива.

Определённые проблемы можно решить путем чистки или замены частей насос-форсунки, не прибегая к замене детали целиком. В других ситуациях без этого не обойтись. Ассортимент как оригинальных, так и аналогичных форсунок на рынке представлен довольно широко.

С чего начать, если хочется самостоятельно обслуживать автомобиль?

У вас есть желание научиться ремонтировать автомобиль самостоятельно? Вы представляете, как это будет классно, самому ликвидировать неисправность? Но при этом вы не уверены в своих силах, считаете, что не способны познать науку автомеханики? Отбросьте сомнения, если вы действительно хотите научиться ремонтировать автомобиль, вы сможете это сделать!

Начинать нужно поэтапно. Конечно же не нужно сразу пытаться снимать с машины двигатель или коробку переключения передач и пытаться их починить, ни к чему хорошему это не приведет. Это все равно, что в средних классах школы вам начнут преподавать вместо элементарной математики преобразования Лапласа. Нелогично, неразумно, вы просто ничего не поймете и потратите многие часы зря.

Если вы действительно хотите научиться ремонтировать автомобили, начните с элементарного.

Для начала вам потребуется:

Терпение и усидчивость. Изучите материал, с которым вам придется работать. Поэтапно, каждый шаг, один за другим.

Приобретите инструменты. Не обязательно дорогие профессиональные наборы, достаточно инструментов начального уровня (не откровенное барахло, конечно же, но приличные дешевые инструменты). Может вам в итоге не понравится лазить в промасленных внутренностях вашего железного друга. В таком случае зачем переплачивать?

И последнее, но при этом самое важное, с чего начинать? Предлагаем вам ознакомиться с пятью интересными и при этом легкими вариантами ремонта, который научит вас основам работы с автомобилем, в случае неправильных действий не нанесет серьезного урона машине и наверняка доставит моральное удовлетворение от того, что вы самостоятельно смогли сделать это. Все слабые стороны подержанной BMW 3 Series (Е90)

Все слабые стороны подержанной BMW 3 Series (Е90)

Если втянитесь в процесс и с постоянной практикой (например, у вас не новый автомобиль, требующий постоянного ремонта), то уже через пару лет вы будете достаточно неплохо знать устройство вашего автомобиля, осознавать, какой болт за что отвечает, какая контргайка какую функцию выполняет и из каких частей состоят те или иные системы.

И все это может начаться с пяти простых ремонтных работ.

Электрическое оборудование

Состоит из следующих основных узлов:

  • Аккумулятор.
  • Генератор переменного тока.
  • Электрическая проводка.
  • Система для управления двигателем.
  • Потребители электрической энергии.

Аккумулятор нужен для запуска двигателя и является источником энергии, который возобновляется. Когда двигатель не запущен, аккумулятор питает все энергопотребители автомобиля.

Генератор необходим для того, чтобы поддерживать постоянное напряжение в борт-сети и подзаряжать аккумулятор.

Проводка является множеством проводов, образующих бортовую сеть, которая соединяет между собой все потребители и источники электричества.

Система, управляющая двигателем, состоит из различных датчиков и электронного блока управления.

Потребители — это фонари, фары, система пуска и зажигания, стеклоподъемники и стеклоочистители.

Таким образом, строение автомобиля является не таким уж сложным, если не углубляться в детали. Ну а тем, кто хочет узнать более подробно обо всех деталях и узлах, рекомендуется искать специализированную литературу.

Что такое Турбокомпаунд

Для многих людей слово турбокомпаунд не только тяжело произнести, но оно еще и ассоциируется с чем-то загадочны и не понятным. Даже люди, которые считают себя технически грамотными и подкованными в вопросах последних технических новшеств не могут с ходу дать определение слову турбокомпаунд, хотя впервые оно появилось в терминологии еще в далеком 1990 году. Из этого материала вы узнаете, что такое Турбокомпаунд, и его практическое применение в современных автомобилях.

Впервые турбокомпаунд был применен на дизельном двигателе DTS 11 01 разработанным шведской компанией Scania в 1990 году, а вот с какой целью было применено это техническое новшество мы и поговорим далее.

Назначение Турбокомпаунда

Целью создания данного технического новшества являлось, является и сейчас, повышение мощностных и эксплуатационных характеристик дизельных двигателей.

Принцип работы

Принцип работы турбокомпаунда основан на использовании энергии отработанных газов, что позволило увеличивать мощность двигателей буквально из ниоткуда.

Давно известно, что энергия, которая выделяется при сгорании топлива в двигателе, используется не полностью.

В каждом двигателе процентные показатели использования энергии разные, но в среднем они такие:

  1. Энергия, которая преобразуется из тепловой в механическую (полезную) – 40 – 45%;
  2. Тепловая энергия, которая уходит на нагревание деталей двигателя – 20 – 25%;
  3. Тепловая энергия, которая уходит вмести с выхлопными газами – 30 – 40%.

С тепловой энергией, которая уходит на нагрев двигателя, мы ничего сделать не можем, с ней «борется» специально созданная система охлаждения.

А вот использовать30 – 40% энергии, которая уходи с выхлопными газами, вполне возможно и ученные это уже доказали.

Первый этап использования энергии

Энергия выхлопных газов для повышения мощности дизельных двигателей впервые была использована в 1961 году на двигателе DS10 от уже известной фирмы Scania, где впервые был установлен турбокомпрессор.

Многим известно, что турбокомпрессор предназначен для нагнетания под давлением воздуха в цилиндры двигателя, чем обеспечивается качественное сгорание топлива и соответственно повышается мощность двигателя. Нагнетание воздуха происходит за счет использования энергии отработанных газов.

Но эта энергия используется не полностью.

Если взять усредненные показатели, то выхлопные газы покидают цилиндры двигателя имея температуру 650 – 750 градусов.

Пройдя через турбину компрессора их температура снижается приблизительно до 550 – 650 градусов, значит теряется около 100 градусов, т.е. из 40% энергии используется приблизительно 15%, а остальные 25% уходят в выхлопную трубу.

Второй этап использования энергии

Для использования оставшейся энергии был разработан специальный турбокомпаундный блок, благодаря которому энергия отработанных газов преобразуется в механическую энергию и через специальный привод передается на колен вал двигателя повышая его мощность.

Как все работает

  1. После сгорания топлива выхлопные газы покидают цилиндры двигателя через выхлопной коллектор с температурой в диапазоне 650 — 750 градусов.
  2. На первом этапе выхлопные газы вращают лопасти турбокомпрессора, про то, что при этом происходит мы писали выше.
  3. Покинув турбокомпрессор выхлопные газы через тормоз двигателя (так называемый горный тормоз) попадают в специальную силовую турбину, которая работает на скорости в 55 тыс. об. в минуту.
  4. Полученный вращательный момент через гидромуфту и систему понижающих редукторов поступает на коленвал двигателя, оттуда на маховик и коробку передач с частотой до 1900 – 2000 об в минуту.
  5. И только тогда выхлопные газы уходят в атмосферу.

Практическое применение

Компания Scania нашла широкое применение для турбокомпаунда в разрабатываемых ей дизельных двигателях для грузовых автомобилей.

Для примера можно взять дизельный двигатель DT 12 02, разработанный компанией в 2001 году и имеющей 12 цилиндров.


420 л.с470 л.с.

Турбокомпаундый блок может устанавливаться практически на любые дизельные двигателя для грузовых автомобилей от компании Scania, было бы желание заказчика.

Чтобы было понятно, благодаря внедрению турбокомпаунда было достигнуто:

  1. Повышение мощности двигателя при не относительно не высоких частотах вращения коленвала двигателя;
  2. Экономия топлива;
  3. Устойчивость работы двигателя при резких перепадах в режимах работы автомобиля;
  4. Мягкая, без рывковая работа двигателя, что достигается постоянной передачи дополнительной мощности от турбокомпаунда к коленвалу, благодаря чему выравнивается пульсация нагрузок.
  5. Более комфортное вождение автомобиля, на котором установлен турбокомпаунд.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Окись углерода (Co, угарный газ)

Чрезвычайно опасный побочный продукт горения. Монооксид углерода представляет собой бесцветный газ без вкуса и запаха. Соединение углерода и кислорода возникает при неполном сжигании углеродсодержащих веществ и является крайне опасным ядом

Поэтому качественная вентиляция в гаражах и подземных паркингах имеет важное значение для жизни их пользователей

Даже небольшое количество окиси углерода приводит к повреждению организма, несколько минут проведенных в плохо проветриваемом гараже с работающим автомобилем может убить человека. Будьте предельно осторожны! Не прогревайте автомобиль в закрытых боксах и помещениях без вентиляции!

Но насколько опасен оксид углерода на открытом воздухе? Проведённый в Баварии эксперимент показал, что в 2016 году средние значения, показанные измерительными станциями, оказались между 0,9-2,4 мг/м3, оказались значительно ниже предельных показателей.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: