Надежная схема регулятора оборотов коллекторного двигателя без потерь мощности с обратной связью по тахо

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей

Вариантов подобных схем множество, поэтому важно понять сам принцип

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убратькрутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

U1=4,44w1k1

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

U1/f1=U’1/f’1

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.

Недостатки:

  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки

В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Особенности первого варианта:

  • На ШИМ транзисторе имеется генератор пилообразного напряжения с частотой 150 Гц.
  • В роли компаратора выступает операционный усилитель.
  • Для изменения скорости используют переменный резистор, который управляет длительностью импульсов.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Зачем они нужны

Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью. Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Через микросхему

Пришло время вспомнить про таходатчик и его выходы, которые мы на двигателе нашли, но до поры отставили в сторону. Именно таходатчик поможет нам подключить двигатель стиралки и регулировать его обороты без потери мощности. Сам таходатчик управлять двигателем не может, он лишь посредник. Реальное управление должно осуществляться посредством микросхемы, которая соединяется с таходатчиком двигателя, обмоткой и якорем и запитывается от сети 220 В. Принципиальную схему вы можете видеть на рисунке ниже.

схема регулятора оборотов двигателя без потери мощности

Что происходит с двигателем, когда мы подключаем его к сети через эту микросхему? А происходит следующее, мы можем запустить двигатель своими руками на максимальных оборотах, а можем, повернув специальный тумблер обороты уменьшить. Даем внезапную нагрузку двигателю, подставив под вращающийся шкив деревянный брусочек. На долю секунды обороты падают, но потом снова восстанавливаются, несмотря на нагрузку.

Дело в том, что таходатчик определяет понижение оборотов из-за возникшей нагрузки и сразу же подает сигнал об этом на управляющую плату. Микросхема, получив сигнал, автоматически добавляет мощность, выравнивая, таким образом, обороты двигателя. Мечта самоделкина, как говорится, сбылась. При наличии такой схемы подключения из двигателя стиральной машины можно сделать и зернодробилку и дровокол и много других полезных вещей.

Подводя итог нашего повествования, ответим еще на один резонный вопрос, который может возникнуть у читателя: где взять такую плату? Можно собрать на основе схемы и списка деталей, которые мы прилагаем к настоящей статье, а можно заказать в готовом виде у специалистов. Благо в сети предложений на этот счет достаточно. Искать нужно схему TDA 1085.

схема подключения двигателя

схема подключения двигателя

Пошаговая инструкция

Классическая схема синистора работает по принципу зарядки конденсатора через мало ёмкий резистор. После того, как напряжение между обкладками достигнет нужного значения, симистор начинает пропускать ток к нагрузке.

Таким образом, можно контролировать емкость конденсатора, изменяя напряжение, которое пойдет на нагрузку.  Для этого отлично подойдет реостат, который устанавливается на место резистора.

К сожалению, такая схема быстро нагревается из-за чего нужно устанавливать дополнительный радиатор позволяющий эффективно отводить тепло.

Данная установка может осуществлять работу от внутреннего накопителя с напряжением 12 В и внешнего 220 В. Однако в таком случае требуется гасящая схема.

В таком режиме работы можно изменять пороговую мощность, это напрямую влияет на мощность работы ротора. Силовые резисторы выставляются на определенные показания входящего тока, собирая его в нужных объемах.

Схема регулятора оборотов для электродвигателя

Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.

Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.

Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.

Регулировка

Коллекторный двигательТеперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк,  происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Для чего вообще регулировать скорость вращения диска болгарки?

  1. При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска. Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска;
  2. Резка и раскрой камня и кафеля на высокой скорости может быть опасной. К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах;
  3. Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения. Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления;
  4. Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора. Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках болгарку с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально;
  5. Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
  6. При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя. Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

U1=4,44w1k1

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

U1/f1=U’1/f’1

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.

Недостатки:

  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Зачем они нужны

skhema-ollektornyj-dvigatel-300x225.jpg

Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Простейший регулятор оборотов электродвигателя своими руками

Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель. Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.

Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.

Контроль крутящего момента

Механизм контроля крутящего момента встроен в грузики регулятора RQ между гнездами внутренних пружин и пружиной максимальных оборотов.

Пружина контроля крутящего момента (7) удерживается внутри крепления пружины (8), в наружную сторону которого упираются пружины максимальных оборотов. Механизм управления крутящим моментом, таким образом, вступает в действие до пружин максимальных оборотов (3). Расстояние между гнездом внутренней пружины (2) и креплением пружины соответствует ходу управления крутящим моментом (а). Он регулируется с помощью регулировочных шайб (6). Начало контроля крутящего момента n1 зависит от кривой потребности автомобиля в
топливе.

При оборотах чуть ниже максимальных пружина управления крутящим моментом сжимается до такой степени, что гнездо внутренней пружины и крепление пружины сжимаются вместе и обороты становятся равными п Без пружины управления крутящим моментом регулятор неэффективен в области между низкими оборотами холостого хода и повышенными оборотами холостого хода (максимальными). Как только пружины управления крутящим моментом сдвигаются, то грузики (5) могут двигаться наружу в области между n1 и n2, соответствующей облас ти хода для управления крутящим моментом. Они сдвигают управляющую рейку в направлении остановки (прекращении подачи топлива) на требуемую величину (положительный или принудительный контроль крутящего момента).

Регулятор оборотов электродвигателя 220в: схема и описание изготовления

Как сделать регулятор оборотов электродвигателя 220в, схема и подробное описание.

В данной статье, мы рассмотрим как сделать контроллер скорости вращения для однофазных коллекторных электродвигателей. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора.

Давайте рассмотрим технические параметры регулятора:

  • напряжение питания: 230 вольт переменного тока.
  • диапазон регулирования: 5…99%.
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором).
  • максимальная мощность без радиатора 300 Вт.
  • низкий уровень шума.
  • стабилизация оборотов.
  • мягкий старт.
  • размеры платы: 50×60 мм.

Электросхема принципиальная

  • Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления электродвигателем — классическая схемотехника для подобных устройств.
  • Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора.
  • Конденсатор C1 отвечает за фильтрацию напряжения питания.

Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Расположение элементов на печатной плате.

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Принципиальная электросхема


Схема регулятор мотора на симисторе и U2008 Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Полезное: Как от литиевого аккумулятора получить 5 и 12 вольт


Печатная плата

На следующем рисунке показано расположение элементов на печатной плате

Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе

Широкие возможности техники слабых токов

В различных поделках для детских игр, робототехники, приусадебной автоматики применяются маломощные двигатели, работающие от 12 Вольтовых источников питания. Скорость вращения этих двигателей в зависимости от областей применения различна.

Регулятор оборотов 12В можно сделать своими руками. От простейших, на транзисторе или кремниевом управляемом выпрямителе (КУВ),  до сложных с повышенной точностью регулировки.

Принцип работы регулятора оборотов на транзисторе заключается в том, что n-p-n транзистор включен последовательно в цепь питания электродвигателя (коллектор к плюсу источника питания, эмиттер к двигателю).

На базу транзистора подается положительный потенциал, регулируемый переменным резистором. Увеличение положительного потенциала на базе транзистора снижает сопротивление перехода коллектор-эмиттер, ток через транзистор и скорость вращения электродвигателя увеличиваются.

И наоборот, снижение потенциала на базе закрывает переход коллектор-эмиттер и скорость вращения двигателя снижается.

Принцип работы регулятора на КУВ заключается в том, что управляющий электрод его подключается к генератору колебаний на полевом транзисторе, частота которого меняется посредством переменного резистора.

Сложные с повышенной точностью регулирования оборотов 12-вольтового двигателя делают с применением таймера 7555. Принципиальную схему и порядок сборки такого регулятора оборотов можно легко найти в Интернете.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector