Регулятор оборотов коллекторного двигателя

Плавающие обороты при неисправном датчике кислорода

Датчик кислорода, или лямбда-зонд, измеряет содержание кислорода в отработанных газах и на основании полученных данных определяет параметры качества рабочей смеси, выдавая сигнал на обеднение или обогащение ее. Устройство работает нормально только после того, как прогреется до рабочей температуры – не менее 300 градусов. Поэтому большинство из них дополняются системой косвенного подогрева для ускорения выхода на рабочий режим. Неисправность подогрева или загрязнение рабочих поверхностей датчиков продуктами сгорания вызывают неточности в определении содержания кислорода, в результате чего работа двигателя будет нестабильной.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой .

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Учимся ремонтировать и настраивать инжекторную систему

Ремонт инжектора – процедура не из простых, что уже было отмечено выше. Несмотря на это, осуществить проверку стабильности функционирования узла и, при необходимости, его «подлатать», отрегулировать вполне возможно даже в условиях среднестатистического гаража

Грамотная регулировка инжектора будет рассмотрена чуть ниже, сейчас же обратим внимание на его ремонт

В шаблонном варианте узел ремонтируется в следующем порядке:

  1. Подготовьте диагностическую аппаратуру: ноутбук, кабель подключения к бортовому компьютеру автомобиля и специальную программу для него;
  2. Затем диагностическое оборудования подсоедините непосредственно к бортовому компьютеру, включите соответствующую программу и внимательно рассмотрите то, какие неисправности выявлены в инжекторе. Именно так проводится диагностика инжектора на профессиональных СТО;
  3. После этого, уже исходя из полученных данных, осуществляется ремонт узла.

Казалось бы, ничего сложного в ремонте инжекторных систем нет, ибо процесс отчасти автоматизированный. Но что делать, если неисправности инжектора бортовым компьютером не определились, или таковой вовсе отсутствует на вашей модели авто? Как проверить инжектор в таком случае? Тут, конечно, порядок ремонта и диагностики будет заметно сложней, но что уж поделать. При невозможности осуществить ремонт инжектора описанным выше способом действовать нужно так:

Первоочерёдно важно осуществить три операции: Проверка топливных магистралей на целостность системы (банальный осмотр всех топливопроводов от бензобака до инжектора); Проверка работы блока управления (здесь уже ситуация посложней, ведь придётся орудовать электроприборами, определять напряжение, силу тока на выходах блока и сравнивать таковые с нормальными показателями); Чистка форсунок (снятие, разбор и, соответственно, чистка – всё просто). Допустим: с форсунками всё в порядке, топливные магистрали целы и блок управления исправен
При таком положении дел стоит обратить внимание на то, горит лампочка инжектора или нет

Если индикатор горит, то с большей долей вероятности неисправен один из датчиков
Определить, какой именно узел «накрылся», можно посредством анализа поведения автомобиля, ибо: при поломке датчика коленвала наблюдается неустойчивая работа мотора на холостом ходу или вовсе отказ двигателя заводиться; при выходе из строя датчиков фаз, кислорода или температуры – увеличенный расход топлива и плохой запуск мотора; при неисправности датчика дросселя – усиление звука работающего мотора; при поломке датчика нагнетания воздуха – «плавающие» холостые; при выходе из строя датчика давления – странный звук выхлопа и проблемы в работе мотора на всех режимах раскрутки; при неисправности датчика скорости – произвольное глушение мотора и ухудшенная динамика автомобиля.

Естественно, любой неисправный датчик требует замены.

В случае, когда описанные выше меры осуществлены, но инжектор всё также плохо работает, следует поискать неисправности в других узлах инжекторной системы или автомобиля в целом.

Случается, что инжектор полностью исправен, но стабильно работать отказывается. В этом случае стоит попробовать перенастроить узел и только потом обращаться за помощью к профессионалам. Отметим, что настройка инжектора особых сложностей не имеет и заключается лишь в обращении к отмеченной выше диагностической аппаратуре. Посредством использования последней выставляются оптимальные показатели всех датчиков, рекомендованные конкретно под вашу конфигурацию авто. Если бортовой компьютер отсутствует, то настройка проводится вручную. В этом случае, как правило, регулируется положение штока датчика холостого хода и больше ничего не трогается.

Резюмируя сегодняшний материал, констатируем – ремонт, настройка и общая диагностика инжектора вполне проводимы в гаражных условиях. Грамотно осуществить данные процедуры помогут полное соблюдение описанного выше порядка и знание принципов работы инжекторных систем. Большего, к слову, и не требуется. Надеемся, сегодняшняя статья была для вас полезна и дала ответы на интересующие вопросы. Удачи на дорогах и в ремонте!

Источник

Простейший регулятор оборотов электродвигателя своими руками

Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.

Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.

Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.

Мощность и нагрузка регулятора оборотов

К самодельному регулятору оборотов двигателя, сделанному по выше представленной схеме, можно подключить нагрузку не более 2 кВт. В случае увеличения нагрузки осуществляется замена главного симистора BT138/800. Если симистор устанавливается большего номинала, то его рекомендуется вынести за пределы общей платы, и обязательно установить на радиатор охлаждения, который можно сделать из куска алюминиевой полосы.

Примечательно то, что подобный регулятор можно использовать не только с электродвигателями, но и с лампами освещения. Таким образом, дёшево и сердито, можно собрать регулятор для яркости ламп освещения.

Подписывайтесь на мой канал в Дзен. Всем удачи, и мирного неба над головой!

FakeHeader

Comments 31

оставь двигатель в покое =) это BSE лёгкие потряхивания на нём норма. Если потряхивания чуть сильнее, то для начала уровень масла глянь, потом уже свечи и прочее.

Лекарство — чистка форсунок со съемом на стенде! лично сами убедитесь в количестве грязи, тому вина наши доблестные рекламные АЗС.

Только что тоже немного поднял обороты, двигатель стал меньше дёргатся.

обороты поднимаются с помощью шнурка, а не прошивку меняют, я себе поднял, вроде эффект был, но уже и не помню) а так машина тоже подергивается на холостых, говорят что это норм, но мне тоже не нравится

я тоже через васю поднимал обороты, но где-то через год все вернулось обратно, это как то временно работает. теперь я просто ас на климате не выключаю и обороты сами держатся, где-то 900, вибрации нет, вот и вся проблема)

Я а/с не включаю, потому как мощность очень сильно падает и кондер видимо у меня грибком порос, простуда вылазит

Самые толковые коменты написаны внизу.остальное срач какой то!)))

Может этот пост поможет? www.drive2.ru/l/6952493/…Сам решил эту проблему установкой иридиевых свечей — потряхивания практически не заметны www.drive2.ru/l/10618436/

для движка 1.6 БСЕ это нормальное явление… если не смотреть на работающий двигатель, то он и не дергается. скорее всего надо «менять что-то в головах», а не в двигателе =)

тыщу раз это уже везде обсуждалось… к счастью таких замороченых не много =)

Свечи менял . Высоковольтные провода менял. Катушку зажигания менял .

не надо повышать обороты, надо устранить причину дерганья. Посмотри свечи провода и высоковольтную часть. Надо лечить причину, а не последствия. У меня тоже дергалась, ничего — вылечил

Была такая же проблема, у меня 1,8 cdaa двигатель. Залил жижу от ликвиМоли и прокатав бак пропали подергивания на холостом, машина ровно работать стала

В цепи якоря

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей

Вариантов подобных схем множество, поэтому важно понять сам принцип

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Регулировка оборотов холостого хода: инжектор и карбюратор


Бензиновые двигатели могут быть оборудованы карбюраторной или инжекторной системой топливоподачи. В случае с карбюратором хорошо известно, что в процессе эксплуатации данной системе необходима периодическая регулировка холостых оборотов. Что касается инжектора, такая система питания работает под управлением ЭБУ, то есть исключается необходимость дополнительной настройки. Однако на практике ситуация несколько иная, так как достаточно часто возникает необходимость отрегулировать обороты холостого хода на инжекторе. Неполадки проявляются в виде неустойчивой работы ДВС на холостом ходу, обороты плавают, двигатель может глохнуть после запуска, перерасходовать топливо в случае завышенных оборотов ХХ и т.п.

Далее мы поговорим о том, как осуществляется регулировка оборотов холостого хода двигателя на инжекторном и карбюраторном двигателе, а также рассмотрим особенности и нюансы выставления холостых оборотов на моторах с указанными системами подачи топлива.

Как можно регулировать обороты асинхронного двигателя: обзор способов

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Регулятор скорости двигателя постоянного тока 12 Вольт

В первую очередь всем здоровья :).

Необходим регулятор оборотов для двигателя постоянного тока? Собрать такой регулятор вполне возможно всего на одной отечественной микросхеме со вспомогательным мощным полевым транзистором.Устройство рассчитано на питание от 12 Вольт постоянного напряжения, двигатель так же должен быть рассчитан на рабочее напряжение 12 Вольт. Регулировка оборотов осуществляется широтно-импульсным методом, в качестве генератора используются два логических элемента микросхемы К561ЛН2. Генератор вырабатывает импульсы порядка 15 кГц и устроен таким образом, что переменным резистором R1 можно менять длительность генерируемых импульсов, соответственно появляется возможность регулировать обороты двигателя. С выхода генератора импульсы поступают в буферный каскад, который представляет из себя четыре параллельно включенные логические элементы. К выходу буферного каскада напрямую подключен затвор мощного полевого транзистора IRF3205, нагрузкой которого и будет двигатель. R1 конструктивно совмещен с выключателем, который отключает генератор от буферного каскада, который подтянут через резистор R4 к положительной шине питания, таким образом при отключении выключателя на выходе буферного каскада формируется низкий уровень напряжения, который надёжно запирает полевой транзистор. Сама схема постоянно подключена к питающему напряжению и потребляет буквально микротоки, чтото около 2-5 мкА. Для надёжности в схеме применен фильтр по питанию на VD3R5C2 для микросхемы К561ЛН2, чтобы исключить попадание создаваемых двигателем помех в её цепь питания. Работоспособность схемы сохраняется в диапазоне питающих напряжений от 9 до 15 Вольт. Максимальный коммутируемый ток зависит от примененного полевого транзистора.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

Изготовить динистор не составит труда

Это важное преимущество устройства, Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации, Позволяет комфортно для пользователя менять обороты двигателя, Большинство моделей основаны на тиристорном регуляторе

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

Заряд тока от источника 220 Вольт идет к конденсатору. Далее идет напряжение пробоя динистора через переменный резистор. После этого происходит непосредственно сам пробой. Симистор открывается. Этот элемент несет ответственность за нагрузку. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора. За счет подобного принципа работы происходит регулировка оборотов электродвигателя. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы

Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Особенности первого варианта:

  • На ШИМ транзисторе имеется генератор пилообразного напряжения с частотой 150 Гц.
  • В роли компаратора выступает операционный усилитель.
  • Для изменения скорости используют переменный резистор, который управляет длительностью импульсов.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Регулировка

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как регулируются обороты

Теперь стоит затронуть тему того, как можно отрегулировать на двигателе завышенные обороты холостого хода.

Замена клапана холостого хода

Не забывайте, что при запуске автомобильный двигатель изначально непродолжительное время может работать при несколько повышенных оборотах в холостом режиме. Когда мотор прогревается, обороты падают и достигают своих нормальных значений. Предварительно стоит узнать, что именно считается нормой конкретно для вашего силового агрегата.

Если же после прогрева число оборотов не падает, это говорит о наличии той или иной неисправности. Её необходимо отыскать и устранить. Тут следует во многом отталкиваться от типа используемого двигателя.

Некоторые игнорируют этот совет, что является большой ошибкой. Если оставить двигатель в таком состоянии, который будет постоянно интенсивно работать при ХХ, начнёт повышаться температура ДВС. За этим последует перегрев двигателя и возможный прогиб головки блока цилиндров. Плюс постепенно начнётся образование выработки трущихся деталей. Ресурс мотора сократится, вы своими руками приблизите капитальный ремонт или отправку двигателя на заслуженный отдых куда-нибудь на свалку.

Выделяют несколько основных причин повышения оборотов. Они связаны с нарушениями и неполадками в:

  • датчике регулятора ХХ;
  • датчике положения заслонки дросселя;
  • самой дроссельной заслонке;
  • температурном датчике;
  • ЭБУ;
  • впускном коллекторе, где образовался подсос воздуха.

Важно заметить, что на карбюраторных моторах можно физически отрегулировать холостой ход. Что нельзя сделать в случае с инжекторным силовым агрегатом

Но зато можно устранить причины повышения оборотов при ХХ. Это разные понятия, о чём не стоит забывать.

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника

Важно помнить: черный провод «-», а красный «+»

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Простой самодельный регулятор

Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

Это дополнительные навыки для вас и определенная экономия средств для кошелька.

Для изготовления регулятора вам потребуется:

  • Набор проводков,
  • Паяльник,
  • Схема,
  • Конденсаторы,
  • Резисторы,
  • Тиристор.

Монтажная схема будет выглядеть следующим образом.

Согласно представленной схеме, регулятор мощности и оборотов будет контролировать 1 полупериод. Расшифровывается она следующим образом.

  1. Питание от стандартной сети 220в поступает на конденсатор. 220 Вольт стандартный показатель бытовых розеток.
  2. Конденсатор, получив заряд, вступает в работу.
  3. Нагрузка переходит к нижнему кабелю и резисторам.
  4. Положительный контакт конденсатора соединяется с электродом тиристора.
  5. Идет один достаточный заряд напряжения.
  6. Второй полупроводник при этом открывается.
  7. Тиристор через себя пропускает полученную от конденсатора нагрузку.
  8. Происходит разряжение конденсатора, и полупериод вновь повторяется.

При большой мощности электродвигателя, питающегося от постоянного или переменного тока, регулятор дает возможность применять агрегат более экономично.

Самодельные регуляторы оборотов имеют полное право на свое существование. Но когда речь заходит о необходимости использовать регулятор электродвигателя для более серьезного оборудования, рекомендуется купить готовое устройство. Пусть оно обойдется дороже, но вы будете уверены в работоспособности и надежности агрегата.

Преимущества и недостатки

Подведя итог, выделим следующим преимущества CLEBO A3:

  1. Навигация на базе камеры и гироскопа.
  2. Построение карты помещения.
  3. Качество сборки и исполнения.
  4. Расширенный комплект поставки.
  5. Несколько рабочих режимов + режим полотера.
  6. Настройка графика уборки.
  7. Управление со смартфона и с пульта.
  8. Работа с голосовыми помощниками.
  9. Низкий уровень шума.

К минусу iCLEBO A3 можно отнести слабо реализованную функцию влажной уборки, которая представляет собой лишь протирку пола смоченной салфеткой без электронного контроля

Также важно понимать, что управляется прибор через Bluetooth, то есть запустить его удалённо, к примеру, находясь на работе, не выйдет. Ну и стоимость робота-пылесоса в 29900 рублей, будем объективными, доступна не каждому. В остальном нареканий к этой модели нет

В остальном нареканий к этой модели нет.

Напоследок рекомендуем посмотреть рейтинг лучших роботов-пылесосов с камерой:

Аналоги:

  • Xiaomi Mijia LDS Vacuum Cleaner
  • GUTREND SENSE 410
  • Roborock S6 Pure
  • Ecovacs DeeBot OZMO 900
  • HOBOT Legee-688
  • iRobot Roomba 960
  • Okami U90 Vision

Регулировка холостого хода на инжекторном автомобиле

В случае, когда речь идёт о плавающих оборотах мотора, прекращении работы двигателя при постановке автомобиля на нейтральную передачу или же о повышении оборотов в случае работы полностью прогретого мотора, то это может говорить о неисправностях регулятора холостого хода или о бедной смеси. Аналогичный вывод можно сделать и в том случае, когда на холодном двигателе обороты оказываются слишком низкими.

Регулятор холостого хода автомобиля Лифан Солано

Проводить регулировку смеси должен компьютер, который собирает данные из целого ряда датчиков (про датчики инжектора мы уже писали выше). Он, на некоторые время, может открывать или же закрывать клапана инжекторов с той величиной, которая нужна для мотора в данный момент.

Порядок действий

Регулятор холостого хода — это исполняющий орган функционирования мотора (механический датчик), то при его некорректной работе лампочка, указывающая на неисправность, гореть не будет. Регулятор является шаговым электрическим двигателем, включающим в себя конусную иглу. Регулятор может быть расположен на корпусе дроссельной заслонки, что позволяет гарантировать конкретный уровень воздушного потока, обходящего закрытую дроссельную заслонку. А его, в свою очередь, задаёт электронная система автомобиля, дабы двигатель работал устойчиво и равномерно, независимо от внешних факторов.

Для начала необходимо отключить аккумулятор. Недостаточно будет просто выключить зажигание. Вам необходимо выключить «массу»
Проводим демонтаж регулятора холостого хода

Вторым пунктом, на который вы должны обратить внимание, является отвинчивание креплений, которые удерживают регулятор. Это позволит вам полностью его снять
Как мы уже сказали, регулятор можно найти на корпусе дроссельной заслонки, к которой он привинчен парой винтов. В части моделей машин винты могут быть залиты специальной краской или, что ещё хуже, рассверлены. В такой ситуации может понадобиться выполнить полный демонтаж корпуса дроссельной заслонки, после чего и будет проводиться разборка и снятие регулятора.
Пункт номер три предполагает чистку посадочного канала. Достаточно будет промыть его, после чего обработать сильным потоком воздуха. Делается это посредством баллончика со сжатым газом или же обычным компрессором

Регулятор нужно разбирать с большой осторожностью, дабы не была повреждена его обмотка. Теперь наступает время провести проверку направляющей втулки, тем более, если конусная игла может свободно двигаться вокруг своей оси с зазором

Если это так, то втулка должна быть заменена новой. В ситуации, когда конусная игла не содержит на своей поверхности существенных повреждений или же потёртостей, то её можно оставить. Но, когда у вас возникают даже малейшие сомнения в её исправности, то её необходимо полностью заменить аналогичной моделью.
Четвёртый пункт инструкции говорит о процессе определения целостности, характерной для прижимной пружины. Также, задействовав специальный измерительный прибор, можно провести проверку целостности обмотки регулятора. Кроме того, не лишним будет очистить контакты этой самой обмотки. И лишь после этого можно снова собирать регулятор холостого хода. Но, прежде чем устанавливать регулятор на автомобиль, необходимо замерить расстояние от фланца его корпуса до кончика конусной иглы. Этот показатель должен быть равен двадцати трём миллиметрам. Если же расстояние отличается от указанного в любую сторону, то игла должна быть заменена новой. Касается это и ситуации, когда никаких видимых повреждений на игле нет.
Пятым, завершающим, пунктом будет то, что вам нужно будет провести установку регулятора холостого хода на своё место. Для него, как вы уже могли видеть в процессе его демонтажа, предусмотрено своё посадочное место. Находится оно в корпусе дроссельной заслонки. После этого можно подключить штекер управления к этому самому регулятору. Далее снова включаем электрическое питание автомобиля. И вот тут начинается самое «интересное». Вам нужно завести мотор и испробовать его в различных условиях работы. Если проблемы сохранились или же не исчезли полностью, то может понадобиться повторный разбор регулятора холостого хода. Но, если и вторая попытка не увенчалась успехом, то поломку стоит искать в других местах. В частности, причиной может быть прошивка бортового компьютера, тем более, если вы покупали автомобиль «с рук».

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: