Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей

Вступление

К сожалению, тестирование солнечных панелей даже профессиональным прибором, не является достаточным условием для производителя. Для полноценного юридического статуса и возможности вести диалог на равных с производителями солнечных панелей, нужно пройти сертификацию TÜV SÜD. Ни одной сертифицированной лаборатории в Украине нет. Я писал в головной офис TÜV SÜD, но наверно что то пошло не так.

Итого — выбросить >1К$ за красивую игрушку (без сертификации) смысла не было, алгоритм построения ВАХ расписан детально, отчего бы не построить свой велосипед прибор?

Но пока я читал про алгоритмы, то набрёл на IV Swinger 2, где сделали уже мопед создание которого расписано пошагово и очень чётко. При этом создатель инструкции очень толковый и общительный человек, за что ему отдельное спасибо.

Характеристики этой модификации покрывают все современные панели, в отличии от старых версий профессиональных измерителей. Снятие ВАХ солнечной панели занимает не более пары секунд. Единственным минусом является слабая масштабируемость по напряжению, и одним махом измерить параметры всего стринга солнечных панелей им нельзя, только отдельного экземпляра. Но даже сняв параметры всего стринга, всё равно нужно найти ту самую панель, которая так повлияла на общий результат, а ведь это именно то, что мы уже умеем!

Эффективность работы зимой

Для гелиосистемы морозная погода не играет роли. Главным здесь является количество ясных световых дней. И, к примеру, если использовать солнечную батарею для горячего водоснабжения, даже в зимний период тридцатиградусных морозов можно стабильно иметь в баке воду температурой 40°C – 50°C.

В регионах с резко континентальным климатом и суровой зимой отказаться от центрального отопления не получится. Но можно дополнить систему баками косвенного нагрева, которые позволяют совмещать различные источники тепла с возможностью включения в работу энергии солнца автоматически и по мере необходимости.

А также можно использовать гелиосистему для поддержки отопления в системе «теплый пол». При этом для 100 квадратных метров пола необходимо примерно 8 коллекторов. Но в летнее время такая большая система будет избыточной, разве что можно использовать ее для поддержания температуры в бассейне или сауне.

Его роль в системе вполне понятна – аккумулятор позволит запастись электричеством солнечного модуля. И тогда можно будет использовать солнечную энергию в качестве электричества.

Преимущества и недостатки солнечных панелей

Как и любое устройство, солнечные панели имеют свои преимущества и недостатки.

Преимущества солнечных панелей

Неиссякаемость, возобновляемость и всеобщая доступность источника энергии, что важно особенно в условиях истощения других видов природного топлива (нефть, газ, уголь).
Экологичность. Солнечные электростанции действительно относятся к наиболее экологически чистым видам производства электроэнергии

При работе они не выделяют вредных примесей в воздух, работают бесшумно в сравнении с ветряками. Единственно к чему можно придраться, как и с электрокарами, так это к тому, что при производстве самих панелей, аккумуляторов, электростанций и различных проводников используются токсичные вещества, которые загрязняют окружающую среду.
Экономичность – солнечные панели дают возможность экономить электроэнергию и, соответственно, деньги. Ведь для выработки электричества применяются солнечные лучи, которые абсолютно бесплатны.
Износостойкость и большой срок службы. Гарантийный срок обычно составляет 25–30 лет, но фотоэлектростанция не прекратит свою деятельность и после этого периода.  Износ происходит очень медленно, особенно если нет подвижных частей.
Одномоментность переработки солнечной энергии в электрическую.
Выработка энергии не только в солнечную, но и в пасмурную погоду.
Возможность автономизации системы энергоснабжения объекта и независимость от централизованного электроснабжения.
Простота, стабильность, надежность конструкции и ее монтажа.
Можно нарастить конструкцию, если есть необходимость увеличения мощности системы это легко сделать благодаря модульности солнечных панелей.

Недостатки солнечных панелей

  • Высокая стоимость и длительный период окупаемости (до 10 лет).
  • Невысокий КПД.
  • Низкая энергоэффективность в пасмурную погоду и ночью.
  • Неравномерная выработка электричества, которая зависит от освещенности и погоды. Это можно компенсировать, если подключить систему к сети – тогда днем можно будет продавать излишнее электричество электрокомпании, а ночью использовать централизованное электроснабжение.
  • Большие размеры. Панели занимают много места – для их установки требуется наличие значительных площадей. Они могут занимать, например, всю крышу и стены строения.
  • Сложность использования в регионах с большим количеством осадков, особенно снега.
  • Потребность в установке дополнительных устройств для получения переменного тока (солнечные панели производят только постоянный ток) и для накопления энергии (потому что электричество вырабатывается только на протяжении светового дня).

Схема работы солнечного электроснабжения

Когда проводишь взглядом по загадочно звучащим названиям узлов, входящих в состав системы питания солнечным светом, приходит мысль о супертехнической сложности устройства.

На микроуровне жизни фотона это так. А наглядно общая схема электрической цепи и принцип ее действия выглядят очень даже просто. От светила небесного до «лампочки Ильича» всего четыре шага.

Солнечные модули – первая составляющая электростанции. Это тонкие прямоугольные панели, собранные из определенного числа стандартных пластин-фотоэлементов. Производители делают фотопанели различными по электрической мощности и напряжению, кратному 12 вольтам.

Устройства плоской формы удобно располагаются на открытых для прямых лучей поверхностях. Модульные блоки объединяются при помощи взаимных подключений в гелиобатарею. Задача батареи преобразовывать получаемую энергию солнца, выдавая постоянный ток заданной величины.

Устройства накопления электрического заряда – аккумуляторы для солнечных батарей известны всем. Роль их внутри системы энергоснабжения от солнца традиционна. Когда домашние потребители подключены к централизованной сети, энергонакопители запасаются электричеством.

Они также аккумулируют его излишки, если для обеспечения расходуемой электроприборами мощности достаточно тока солнечного модуля.

Аккумуляторный блок отдает цепи требуемое количество энергии и поддерживает стабильное напряжение, как только потребление в ней возрастает до повышенного значения. То же происходит, например, ночью при неработающих фотопанелях или во время малосолнечной погоды.

Схема энергообеспечения дома с помощью солнечных батарей отличается от вариантов с коллекторами возможностью накапливать энергию в аккумуляторе

Контроллер – электронный посредник между солнечным модулем и аккумуляторами. Его роль регулировать уровень заряда аккумуляторных батарей. Прибор не допускает их закипания от перезарядки или падения электрического потенциала ниже определенной нормы, необходимой для устойчивой работы всей гелиосистемы.

Переворачивающий, так дословно объясняется звучание термина инвертор для солнечных батарей. Да, ведь на самом деле, этот узел выполняет функцию, когда-то казавшуюся электротехникам фантастикой.

Он преобразует постоянный ток солнечного модуля и аккумуляторов в переменный с разностью потенциалов 220 вольт. Именно такое напряжение является рабочим для подавляющей массы бытовых электроустройств.

Поток солнечной энергии пропорционален положению светила: устанавливая модули, хорошо бы предусмотреть регулировку угла наклона в зависимости от времени года

Виды солнечных модулей-панелей

Гелиопанели-модули собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Массовое применение нашли ФЭП двух видов.

Они отличаются используемыми для их изготовления разновидностями полупроводника из кремния, это:

  • Поликристаллические. Это солнечные элементы, изготовленные из кремниевого расплава путем длительного охлаждения. Несложный метод производства обуславливает доступность цены, но производительность поликристаллического варианта не превышает 12%.
  • Монокристаллические. Это элементы, полученные в результате нарезки на тонкие пластины искусственно выращенного кремниевого кристалла. Самый продуктивный и дорогой вариант. Средний КПД в районе 17 %, можно найти монокристаллические фотоэлементы с более высокой производительностью.

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородной поверхностной структуры квадраты со срезанными углами (псевдоквадраты).

Так выглядят ФЭП – фотоэлектрические преобразователи: характеристики солнечного модуля не зависят от разновидности применяемых элементов – это влияет лишь на размеры и цену

Панели первого исполнения при одинаковой мощности больше размером, чем вторые из-за меньшей эффективности (18% против 22%). Но процентов, в среднем, на десять дешевле и пользуются преимущественным спросом.

О правилах и нюансах выбора солнечных батарей для снабжения энергией автономного отопления вы сможете прочитать здесь.

Солнечные панели – из истории создания

Идея преобразования бесплатных солнечных лучей в энергию, которая будет работать на благо человека, будоражила людей давно. Так сложилось, что первым решением исторически стали солнечные термальные электростанции или солнечные коллекторы, которые принципиально отличатся от солнечных батарей (о принципе  действия коллекторов коротко расскажем ниже). Солнечные же панели стали по факту второй и достаточно удачной попыткой человечества преобразовать энергию солнца в другой вид энергии, которая может использоваться для электроснабжения разного рода жилых, нежилых и хозяйственных обьектов.

И хотя солнечной энергетике не так много лет, ее развитию предшествовал целый ряд открытий и разработок. Но настоящий прорыв в направлении использования энергии света случился в середине 19 века, когда французский ученый Александр Эдмон Беккерель открыл явление фотоэлектрического эффекта. В 1873 году английский инженер-электрик Уиллоуби Смит обнаружил эффект фотопроводимости в селене, а несколькими годами спустя американец Чарльз Фриттс сконструировал  первый фотоэлемент, состоящий из тонкого слоя селена, расположенного между пластинками золота и меди, и имевший эффективность всего 1%.  

В 1987 году Генрих Герц открыл внешний фотоэффект, а в 1889 году русский Александр Столетов, в экспериментальной установке которого потек электрический ток, рожденный световыми лучами, описал закономерности фотоэффекта.  Позднее к этому «приложил руку» и Альберт Эйнштейн. В начале 20 века он  объяснил фотоэлектрический эффект на основе квантовой теории, за что впоследствии даже получил Нобелевскую премию. А первые прототипы солнечных панелей были созданы  итальянским фотохимиком Джакомо Луиджи Чамичаном. В дальнейшем научные изыскания в области полупроводников привели к синтезированию кремниевых   фотоэлементов с КПД 4%. Эта инновация была сделана в 1954 году в лаборатории компании «Bell Telephone». Позднее их эффективность увеличили до 15%, и солнечные батареи были впервые использованы в сельской местности и отдаленных городах как  источник питания для системы телефонной связи, где они успешно использовались на протяжении многих лет. Еще через несколько лет в космос были запущены спутники с использованием солнечных батарей. Впоследствии были разработаны и созданы фотоэлементы на основе других полупроводников.

Сборка

Далее процесс простой, но растянутый во времени.

Ждем платы

и детали

паяем и тестируем.

Инструкция настолько подробная, что аж скулы сводит сборка напоминала конструктор лего.

Беда пришла откуда не ждали.

Для более точной настройки, а мне очень хотелось утереть нос владельцам приборов за 1К получить максимальную точность, есть возможности дополнительной точной калибровки. Для этого нужен блок питания на 100 В, который у меня как раз применяется для электролюминесценции.

Итого накрылась материнка и свежесобранный прибор, которым я успел проверить только пару аккумуляторов. Все детали, кроме плат, я заказывал впритык, поэтому еще минус пару недель, на повторную доставку сгоревших компонентов.

Минимальный комплект для частного дома

Покупать лучше всего готовый комплект, чтобы не собирать все элементы отдельно и не разбираться в характеристиках каждого. В готовых наборах есть все нужные узлы, характеристика каждого подобраны так, чтобы система работала с максимальным эффектом. Изучить информацию намного проще, так как она собрана в одном месте и систематизирована.

Что касается комплектности, чаще всего в набор входит следующее:

  1. Солнечные батареи. Основная часть, рассчитывать количество надо индивидуально в зависимости от потребления электричества. Заранее продумать расположение, от этого зависит эффективность работы.
  2. Контроллер защищает систему, следит за уровнем заряда аккумуляторов и прекращает подачу напряжения, если они заряжены полностью. Ставится как можно ближе к панелям.
  3. Инвертор преобразует постоянный ток в переменный, который нужен для работы бытовых приборов. Подбирать его нужно по мощности и помнить, что номинальный и пиковый показатели различаются. Не надо покупать слишком производительный вариант, если нагрузки основную часть времени небольшие.
  4. Аккумуляторные батареи. Накапливают энергию, чтобы отдавать ее в периоды, когда солнечные батареи ее не вырабатывают или вырабатывают в недостаточном объеме. Используется несколько аккумуляторов, соединенных перемычками в единый блок.
  5. Кабель для соединения всех элементов сети, перемычки, плавкие предохранители, автоматы защиты и другие мелочи. Опять же, при покупке комплекта все необходимое уже будет в наборе и не придется разбираться, что надо приобрести дополнительно.


Готовый комплект – удобное решение.

Состав комплекта может меняться в зависимости от мощности, типа используемых солнечных батарей и особенностей монтажа. Многие продавцы добавляют стеллаж для установки аккумуляторных батарей и пластиковый бокс на несколько модулей.

При выборе учитывайте не только показатели оборудования, но и производителя. Лучше всего почитать отзывы на специализированных ресурсах или тематических формах. Мнение тех, кто пользуется системой, позволит понять, соответствуют ли указанные данные фактическим и нет ли проблем при эксплуатации выбранного комплекта.

Виды

Монокристаллические

Такие батареи визуально выглядят как панели с сегментами глубокого черного цвета. Получили название за счет конструкции на основе монокристаллов кремния.

Самый существенный недостаток — строгая ориентировка оптических осей кристаллов, что требует точного позиционирования панелей для получения максимальной отдачи. По этой же причине монокристаллы не терпят затенения – генерация энергии значительно снижается.

В настоящий момент обладают самым высоким КПД преобразования – около 22%. При этом стоимость тоже наиболее высокая – порядка 0.9-1.1 доллара за 1 Вт генерируемой мощности.

Поликристаллические модули

Название такие батареи получили за счет размещения на подложке множества кремниевых кристаллов с хаотически ориентированными оптическими осями. Визуально такие модули отличаются синим цветом с «морозным» рисунком.

Аморфные

Технология изготовления рабочего тела сходна с поликристаллическими, но в качестве основы выступает аморфный кремний (aSi). При КПД в пределах 8-11% отличаются высокой эффективностью работы в рассеянном свете, могут захватывать и инфракрасный диапазон. В результате обладают лучшей стоимостью – порядка 0.5-0.7 доллара за 1 Вт.

Кроме того, имеют солидное преимущество – гибкую основу. Это означает, что для монтажа не требуется жестких конструкций, материал легко клеится на поверхности любой формы.

Остальные

Модули, предлагаемые производителями, могут быть изготовлены и по другим технологиям:

  • Микроморфные, отличаются высокой отдачей при рассеянном и инфракрасном излучении.
  • Гибридные, использует несколько полупроводниковых материалов и обеспечивают высокий КПД преобразования (до 44%).
  • Полимерные, гибкие с подложкой из полимерных материалов, абсолютные лидеры по стоимости.

Такие предложения следует тщательно изучать, некоторые из них могут оказаться намного выгоднее, чем лидирующие на рынке панели, выполненные по стандартным технологиям.

Вообще, монокристаллические панели можно рекомендовать для установки только жителям южных регионов. Остальным следует выбирать поликристаллы или панели по другим технологиям.

Следует обращать внимание не только на технологию панелей, но и на качество. В маркировке оно отображается как Grade от A (самое высокое) до D

Кроме того, рекомендуется проверить и репутацию производителя, особенно, если он выпускает не собственную, а OEM-продукцию. Сделать это можно на сайтах лабораторий качества – Калифорнийской или Европейской TUV.

Мощность и напряжение

Мощность панелей определяют следующим образом:

  • Рассчитывают среднюю суммарную мощность потребления (по показателям электросчетчика, счетам за электроэнергию). Для среднедневного потребления показатели за месяц делят на количество дней.
  • К полученному результату добавляют 20-30%, чтобы получить запас с учетом КД преобразования (потерь на заряд аккумуляторов и работу инвертора).
  • По полученным данным рассчитывают выходную мощность панелей с учетом длительности светового дня. Для расчетов она принимается равной 6 ч, соответственно мощность батареи должна превосходить среднее потребление в 4 раза.
  • Выбирают напряжение панели. Как правило, производители предлагают батареи с выходным напряжением 12В. Однако для заряда накопителей и повышения КПД преобразования постоянного напряжения переменное на инверторе (особенно при большой мощности), выгоднее иметь более высокие значения.Стандартно используют:
    • 12 В для систем для мощностей до 1 кВт.
    • 24 В или 36 В – до 5 кВт.
    • 48 В – более 5 кВт.

Такие напряжения получают последовательным соединением панелей.

  • Определяют пиковую мощность, для чего суммируют мощности всех потребителей в доме.
  • Определяют пиковую мощность с запасом 10-20%, например, на пусковые токи электродвигателей и работу нагревательных элементов системы ГВС, стиральной и посудомоечной машин и т.д.
  • По пиковой мощности определяют максимальный ток панелей.
  • В справочниках находят коэффициент инсоляции (в летнее и зимнее время) для местности.

Для дальнейших расчетов следует воспользоваться формулой:

P = Kc * Wn * Ki, учитывающей

  • Кс – сезонный коэффициент, для летнего времени принимается равным 0.5, для зимнего — 0.7;
  • Ki – коэффициент инсоляции, для летнего и зимнего времени;
  • Wn – номинальную мощность панели.

Выбрав в каталогах производителей несколько моделей батарей для каждой из них рассчитывают мощность генерации в зимнее и летнее время.

Затем определяют необходимое количество панелей, разделив рассчитанную выше среднюю мощность потребления (с запасом) на мощность генерации. Вычисления ведут для зимнего и летнего периода, в качестве итога принимают большее значение.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем

Округления ведут до большего целого числа. При напряжениях более 12 В округляют до чисел кратных 2 для систем с питание 24В, 3 для 36В и 4 для 48 В.

После расчетов проверяют:

  • Максимальную токовую нагрузку на панели по пиковому потреблению. Если максимальный ток больше, чем обеспечивают соединенные параллельно батареи, следует выбрать более мощные.
  • Бюджет. Определяют общую стоимость панелей и сравнивают с выделенной на их покупку суммой.

Гетероструктурная технология HJT

Технология HJT используется несколькими производителями солнечных батарей. В настоящее время и российская компания Хевел производит серийные панели с использованием гетеропереходных элементов, а так же Panasonic и ряд других компаний. Группа компаний REC недавно анонсировала новые панели серии Alpha, в которых используются ячейки HJC с 16 микро шинами для достижения впечатляющей эффективности в 21,7%. Вслед за первоначальной разработкой HJC, проделанной UNSW и Sanyo, Panasonic создала эффективную серию панелей ‘HIT’ и уже много лет является лидером в технологии ячеек HJT.

Солнечные элементы HJT используют основу из обычного кристаллического кремния с дополнительными тонкопленочными слоями аморфного кремния по обе стороны ячейки, образуя так называемый гетеропереход. В отличие от обычных P-N-соединительных ячеек, многослойные гетеропереходные ячейки могут значительно повысить эффективность. В лабораторных испытаниях достигается эффективность до 26,5% в сочетании с технологией IBC.

В Panasonic разработали ячейку HIT, с использованием высокопроизводительной кремниевой основы N-типа для производства солнечных батарей с КПД более 20,0% и превосходными характеристиками при высоких температурах. Кремниевые элементы N-типа также обеспечивают исключительную долговременную производительность, гарантирующую 90,76% остаточной мощности через 25 лет, что является вторым по величине из доступных после SunPower.

HJT лидер при высоких температурах

Наиболее впечатляющей характеристикой ячеек Panasonic HIT является невероятно низкий температурный коэффициент, который на 40% меньше, чем у обычных поли и монокристаллических ячеек. Выходная мощность панелей приводится при температуре на элементах 25 градусов Цельсия, при стандартных условиях STC (Standard Test Conditions), и каждый градус выше немного снижает выходную мощность.

Температурный коэффициент влияет на снижение мощности при увеличении температуры на солнечных элементах.

В обычных поли и моноэлементах это значение составляет от 0,38% до 0,42% на градус C, что может привести к снижению общей производительности на 20% или более в очень жаркие безветренные дни. Для сравнения, у HIT от Panasonic очень низкий температурный коэффициент 0,26% на градус, что является самым низким показателем среди всех производимых сегодня элементов.

На температуру панели и ячейки также влияют цвет крыши, угол наклона и скорость ветра, поэтому установка плоских панелей на очень темной крыше обычно снижает производительность панели по сравнению с крышами более светлого цвета.

Уникальные панели Panasonic HIT доступны только в Японии и Северной Америке и, к сожалению, в настоящее время недоступны в России, но не стоит расстраиваться на этот счет, ведь стоимость таких панелей пока очень высока и благо существуют альтернативные варианты.

ТОП-9: Солнечная панель SolarGorilla за 15499 рублей

Описание

Современный человек, уезжая из дома на отдых или в командировку часто с собой берет ноутбук. Чтобы он всегда находился в рабочем состоянии, разработчики выпустили солнечную зарядку на фотоэлементах, состоящую из пары солнечных панелей, для повышения производительности которых использовано антибликовое стекло.

Его главным отличием является уникальный дизайн – выполнено устройство в виде раскладушки. Это делает его удобным для перевозки и одновременно служит защитой. Для зарядки гаджету нужны солнечные лучи, а оптимальное расположение к светилу поможет выбрать индикатор светодиодный: чем ярче его зеленый цвет, тем большая мощность будет на выходе.

Параметры

  • Мощность — 40 Вт;
  • Напряжение выхода — 5 и 30В;
  • Ширина – 20 см;
  • Длина – 26,4 см;
  • Высота -1,9 см;
  • Масса- 0,7 кг.

Важно: При пользовании устройством, рекомендуется проводить ему «разминку», т.е. оставлять минут на десять на солнце, до того, как подключать заряжаемый гаджет

Нельзя применять для чистки химические вещества.

Являясь альтернативой зарядки, работающей от сети, надежное и компактное солнечное устройство открывает новые возможности использования портативных гаджетов вдали от электричества.

Комплектация

Она не богатая, но вполне достаточная. Входят в нее переходники (9 шт.), позволяющие подзаряжать все виды ноутбуков и насадки для мобильных (8 шт.), антибликовой покрытие, удлинитель DC b USB, чехол неопреновый для хранения и лямки с липучкой.

Корпус

Корпус зарядки выполнен из высококачественного каучука с боковыми вставками из ребристого пластика, защищен от влаги. Поэтому не подведет в экстремальной ситуации.

Стоимость

Где купить Цена в рублях
http://www.aktivstyle.ru/node/13891 16780
http://ro-bo.ru/katalog/hi-tech-gadzhety/solnechnaya-panel-solargorilla.html 19990
https://www.bymobile.ru/gadjety/portativnye-akkumuljatory/solnechnye-batarei/solnecheaja-batareja-powertraveller-solargorilla-solar-charger-grey.htm 15499
https://alpindustria.ru/catalog/turisticheskoe-snaryajenie/chasy-i-pribory/-9828/ уточнять

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Общие характеристики и доступность приобретения

Оборудование не наносит вреда окружающей среде и обеспечивает стабильное питание без скачков напряжения. И, главное, поставляет бесплатную энергию: за которую не приходят коммунальные счета.

Внешний вид солнечных панелей мало изменился, после их изобретения, чего не скажешь о внутренней «начинке»Источник ecoteco.ru

Солнечная модуль преобразовывает свет в электрическую энергию, генерируя постоянный ток. Площадь панелей может достигать нескольких метров. Когда необходимо увеличить мощность системы, увеличивают количество модулей. Их эффективность зависит от интенсивности солнечного света и угла падения лучей: от местоположения, сезона, климатических условий и времени суток. Чтобы грамотно учитывать все эти нюансы, монтаж должны выполнять профессионалы.

Виды модулей:

Монокристаллические.

Состоят из силиконовых ячеек, преобразующих солнечную энергию. Отличаются компактными размерами. По своей производительности это до недавнего времени самая эффективная (КПД до 22 %) солнечная батарея для дома. Комплект (цена его одна из дорогостоящих) обойдется от 100 тыс. рублей.

Поликристаллические.

В них используется поликристаллический кремний. Они не так эффективны (эффективность до 18%), как монокристаллические фотоэлементы. Зато их стоимость существенно ниже, поэтому они доступны широким слоям населения.

Аморфные.

Имеют тонкопленочные фотоэлементы на основе кремния. Уступают моно и поликристаллам по выработке энергии, но и стоят дешевле. Их преимуществом является способность функционировать при рассеянном и даже слабом освещении.

Гетероструктурные.

Современные и наиболее эффективные на сегодняшний день солнечные модули, обладающие КПД 22-25% (на протяжении всего срока службы!). Эффективно работают как в облачную погоду, так и при высоких температурах).

В России единственным производителем модулей по этой технологии является компания «Хевел», которая входит в пятерку мировых производителей, выпускающих гетероструктурные солнечные модули.

НТЦ компании в 2016 году запатентовал собственную технологию создания гетероструктурных модулей и сейчас её активно развивает.

Гетероструктурные солнечные панели «Хевел»Источник hevelsolar.com

В систему входят также следующие компоненты:

  • Инвертор, который преобразует постоянный ток в переменный.
  • Аккумуляторная батарея. Она не только накапливает энергию, но и нивелирует перепады напряжения, когда меняется уровень освещенности.
  • Контроллер зарядного напряжения аккумулятора, режима зарядки, температуры и других параметров.

В магазинах можно приобрести как отдельные компоненты, так и целые системы. При этом мощность устройств определяется исходя из конкретных потребностей.

Принцип работы солнечной электростанции в домашних условиях

Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

Видео описание

Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:

Как солнечная энергия используется для получения тепла

 Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

Солнечные коллекторы состоят из:

  • бака-аккумулятора;
  • насосной станции;
  • контроллера;
  • трубопроводы;
  • фиттингов.

По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

Принцип действия солнечного коллектораИсточник 21ek.ru

Популярные производители солнечных батарей

Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

  • ООО «Хевел» в Новочебоксарске;
  • «Телеком-СТВ» в Зеленограде;
  • «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
  • ОАО «Рязанский завод металлокерамических приборов»;
  • ЗАО «Термотрон-завод» и другие.

По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com

Этапы монтажа батарей

  1. Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
  2. Устанавливаются панели при помощи специальных крепежных систем.
  3. Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.

Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca

Как итог – перспективы развития солнечных технологий

Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: