КПД
Работа теплового двигателя заключается в действии силы на тело. Эффект оценивается величиной, называемой КПД (коэффициент полезного действия), поскольку только часть выделенной энергии расходуется на работу.
Полное расходование энергии невозможно, поскольку природные действия нельзя провести в обратном направлении. Это означает, что выделенное тепло не может самостоятельно вернуться от холодильника к нагревателю, иначе всю энергию можно было бы пустить на работу силовой установки.
Работа двигателя характеризуется формулой:
A = |Q1| — |Q2|,
«Q1» — количество тепла, переданное от охладительной установки, «Q2» – величина тепла, переданное охладительной установке.
КПД тепловых двигателей «ɳ», это частное, полученное от совершённой установкой работы к величине тепла, которое отдала нагревательная установка.
Двигателей, вся теплота которых идёт на выполнение работы, нет, поэтому КПД ɳ˂1. Коэффициент полезного действия пропорционален результату вычитания температуры установки нагрева и установки охлаждения. «T1» -«T2» = 0, работа двигателя невозможна. Энергию, расходуемую двигателем, определяют исходя из энергии, выделяемой при сжигании используемой смеси. Показатель определяют, сжигая килограмм топлива и производя замеры в калориметре.
Удельная теплота сгорания горючего:
Горючее | Количество теплоты, при сгорании 1кг горючего МДж/кг. |
Керосин | 44 |
Бензин | 46 |
Каменный уголь | 30 |
Бурый уголь | 20 |
Дерево | 10 |
Применение ДВС
Тепловое расширение нашло свое применение в различных современных технологиях. В частности можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т. е. в двигателях внутреннего и внешнего сгорания:
* Роторных двигателях;
* Реактивных двигателях;
* Турбореактивных двигателях;
* Газотурбинные установки;
* Двигателях Ванкеля;
* Двигателях Стирлинга;
* Ядерные силовые установки.
Тепловое расширение воды используется в паровых турбинах и т. д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства. Например, двигатели внутреннего сгорания наиболее широко используются:
* Транспортные установки;
* Сельскохозяйственные машины.
В стационарной энергетике двигатели внутреннего сгорания широко используются:
* На небольших электростанциях;
* Энергопоезда;
* Аварийные энергоустановки.
ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т. п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах.
Турбореактивные двигатели широко распространены в авиации. Паровые турбины – основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов.
Существуют даже паровые автомобили, но они не получили распространения из–за конструктивной сложности.
Тепловое расширение применяется также в различных тепловых реле, принцип действия, которых основан на линейном расширении трубки и стержня, изготовленных из материалов с различным температурным коэффициентом линейного расширения.
Как проверить давление масла в двигателе
Проверка может быть нужна независимо от того, оборудован ли автомобиль стрелочным/цифровым индикатором или вывод данных о давлении на приборную панель конструктивно не предусмотрен.
Добавим, что все большее количество современных авто не имеет сегодня даже лампочки давления масла. Получается, нет возможности визуально проверить этот показатель и его изменения на разных режимах работы ДВС без дополнительных приспособлений.
Идем далее. Чтобы понять, какую отметку считаеть нормой для конкретного мотора, необходима таблица давления масла в двигателях того или иного производителя. Данную информацию можно найти в мануале, в специальной технической литературе по ремонту и эксплуатации, на профильных автофорумах и т.д.
Как уже было сказано, лампочка на панели может полностью отсутствовать. При этом даже ее наличие не позволяет точно определить нужный показатель. Не следует забывать о том, что также возможны сбои в работе самого индикатора (перегорание лампы, неисправности электрической проводки или датчика давления смазки).
Такие неисправности могут произойти в любой момент, при этом водитель лишается возможности контролировать давление в штатном режиме. Добавим, что для быстрой проверки лампы можно на незаведенном двигателе включить зажигание. Лампочка масла должна гореть. После запуска ДВС указанная лампа гаснет сразу или через 1-2 секунды. Если при включении зажигания лампа не загорается, тогда высока вероятность выхода элемента из строя.
Вернемся к проверке
Чтобы проверить давление масла, нужно иметь специальный манометр.
Обратите внимание, для точности замеров потребуется заранее прогреть двигатель до рабочей температуры.
Затем силовой агрегат нужно остановить. После этого следует обнаружить датчик давления масла на моторе.
Далее указанный датчик выкручивается, после чего подсоединяется переходник от манометра.
Затем можно запустить агрегат, после чего оценивается давление масла на холостом ходу.
Теперь нужно нажать на педаль газа, поднимая обороты до средних и высоких, параллельно фиксируя показания.
Для многих авто такой способ является оптимальным решением для замеров
Важно, чтобы измерительный прибор был исправным, также при анализе показаний все равно следует учитывать возможную погрешность
Также можно использовать цифровой измеритель (цифровой манометр с датчиком давления масла). Единственное, бюджетные приборы малоизвестных производителей отличаются большой погрешностью при измерениях. Это же утверждение справедливо и в том случае, когда автовладелец принимает решение установить дополнительный цифровой указатель давления масла в свой автомобиль.
Что касается самих показателей, они могут быть разными применительно к различным типам ДВС (дизель, бензин, производитель, объем, мощность, количество цилиндров, конструктивные особенности того или иного мотора). Например, давление масла в двигателе 2109 будет отличаться от аналогичного показателя на 16-клапанных моторах Лада Приора и т.д.
С учетом вышесказанного становится понятно, что нужные данные следует уточнять отдельно для каждого мотора. Если же говорить об усредненном показателе, при котором агрегат будет нормально работать, тогда:
- в режиме холостых оборотов давление масла на прогретом двигателе (температура масла около 80 градусов) должно быть около 2 бар (или 0.2 МПа);
- при повышении оборотов давление смазки должно расти, на высоких оборотах показатель должен составлять от 4.5 до 6.5 бар;
Понятие теплового двигателя
Дабы разобраться, какое устройство называют тепловым двигателем, рассмотрим, как функционирует агрегат. По принятой классификации, установка способна преобразовать тепло от окисления горючего в действие силы на тело посредством теплового объёмного увеличения. Что касается изменения объёма, этот показатель часто встречающийся, однако, в некоторых двигателях используется изменение формы рабочего вещества.
Принцип работы теплового двигателя заключается в воздействии расширяющихся частиц газа на поршень, или лопасти турбины. В результате этого давления происходит перемещение детали, либо вращение вокруг оси. Работа наблюдается в силовых установках, работающих за счёт пара и в агрегатах, где сгорание горючего происходит внутри. Используя вращение, функционируют реактивные моторы самолётов.
Конструктивно агрегаты отличаются между собой, однако принцип действия тепловых двигателей одинаков. Механизмы оборудованы устройством нагрева, в роли рабочего вещества выступает пар или газ и устройством, поддерживающим низкую температуру. Установка нагрева предназначена для выработки тепловой энергии, способствует сгоранию и выделению тепла. Допустим, при горении выделилось некоторое количество тепла «Q нагревателя», эта энергия частично передаётся нагревателю и нагревает до температуры «T нагревателя». Проводится работа «А», ей предшествует перемещение поршня или турбинных лопаток.
Структурная схема работы теплового двигателя:
Вся величина в работу не трансформируется, её количество «Q холодильника» передаётся посредством теплоотдачи через корпус охладительной установке с величиной температуры «T холодильника», роль охладителя играет атмосфера.
История развития двигателей внешнего сгорания
В отличие от двигателей внутреннего сгорания (ДВС), где энергия выделяется в результате расширения объема воздуха при сгорании топливных смесей, здесь нагрев рабочего материала осуществляется через наружные стенки цилиндра. Отсюда произошло название «Двигатель внешнего сгорания».
Благодаря появлению в конструкции двигателя регенерирующего элемента, тепло надолго сохраняется в зоне действия при охлаждении рабочего тела, что способствует значительному повышению производительности двигателя. Изобретение позволило увеличить эффективность механизмов, его стали широко применять в промышленном производстве.
С течением времени, устройства Стирлинга утратили популярность, но по инерции продолжали применяться на некоторых немногочисленных производствах. Паровые двигатели уступили лидирующую ступеньку механизмам нового поколения:
- двигателям внутреннего сгорания;
- паровым машинам;
- электрическим двигателям.
О достоинствах тепловых устройств снова стали вспоминать только в двадцатом веке. Внедрением двигателей Стирлинга в современные разработки занимаются лучшие инженерные коллективы известных производителей Америки, Швеции, Японии и пр.
Недостатки ДВС
При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.
Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.
Рекомендации по правильной эксплуатации двигателя
Сделать капремонт двигателя своими руками возможно лишь частично. Потому что, нужны станки, ГБЦ и ГБ приходится отдавать на расточку и шлифовку. Остальные все работы можно сделать самому. Чем проще авто, тем легче делать ремонт. Самостоятельно сделать капиталку на автомобилях ВАЗ, ГАЗ, УАЗ, НИВА не составляет особого труда.
Чтобы увеличить ресурс мотора любого автомобиля требуется:
- покупать качественные запчасти и расходные материалы;
- своевременно проходить техническое обслуживание;
- самое главное — это менять моторное масло через каждые 6-7 тысяч километров;
- аккуратная плавная езды без рывков также увеличивают срок службы автомобиля.
После капитального ремонта двигателя масло надо менять с такой периодичностью:
- После 500 км пути — первая замена.
- После 1000 км пути — вторая замена.
- После 1500 км пути — третья замена масла.
- После 2000 км пути — четвертая замена и, далее по графику, через каждые 10-15 т.км.
На видео показаны некоторые виды работ по капремонту ДВС.
Комментарии: 25Публикации: 324Регистрация: 04-03-2016
Принцип работы
Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.
Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.
Принцип работы четырехтактного двигателя
Такты четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации
Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)
Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
- На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
- Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
- Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
- И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.
Работа четырехтактного двигателя
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Такты двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
- В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
- Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Работа двухтактного двигателя
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.
Принцип работы
В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.
Как работает двигатель внутреннего сгорания:
- Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
- После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
- В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
- Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.
КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.
Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).
Рис. 1.2. Двигатель со снятой головкой блока цилиндров.
Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.
Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).
Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.
Рис. 1.3. Поршень с шатуном.
На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).
Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.
Примечание.
Распределительный вал двигателя приводится в действие коленчатым валом.
Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).
При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.
Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.
Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.
По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.
КПД тепловых машин
Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.
Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.
О паровых двигателях
Хронология этого изобретения ведёт свой отсчёт от эпохи Архимеда, придумавшего пушку, стрелявшую с помощью пара. Затем следует череда славных имён, предлагавших свои проекты. Наиболее эффективный вариант устройства принадлежит русскому изобретателю Ивану Ползунову. В отличие от своих предшественников он предложил непрерывный ход рабочего вала за счёт использования попеременной работы 2-х цилиндров.
Сгорание топлива и образование пара у паровых машин происходит вне рабочей камеры. Поэтому их называют двигателями внешнего сгорания.
По такому же принципу образуется рабочее тело в паровых и газовых турбинах. Их далеким прообразом явился шар, вращаемый паром. Автором этого механизма был учёный Герон, творивший свои машины и приборы, в древней Александрии.
Суть изобретения Стирлинга
На схеме тепловой двигатель состоит из двух цилиндров компрессионного и рабочего. Левая и правая стороны удлиненного цилиндра разделены теплоизоляционной стенкой. Внутри ходит специальный вытеснительный поршень, который не соприкасается с боковыми стенками.
- К левой стороне устройства подводится тепло, к правой – охлаждение.
- Когда поршень движется влево, горячий воздух вытесняется в холодную правую зону и охлаждается.
- При этом газ уменьшается объеме.
- Рабочий поршень втягивается влево.
- При движении вытеснительного поршня вправо холодный воздух вытесняется в горячую зону, где нагревается и расширяется.
- Толкает рабочий поршень вправо.
- Рабочий и вытеснительный поршни связаны между собой через коленчатый вал с углом смещения 90 градусов.
- электричество;
- солнце;
- ядерная энергия и пр.
Преимущества и недостатки гибридных авто
Транспорт с гибридной силовой установкой расходует на 30 % меньше топлива по сравнению со стандартными моделями. На этом преимущества использования гибридного автомобильного двигателя не заканчиваются:
- минимальное количество вредных выбросов за счет технологий рекуперативного торможения, наличия емкой АКБ;
- согласованность функций ДВС и электромотора;
- полезные инновации – опции стоп-старта, рециркуляции отработанных газовых смесей (подогревают тосол), изменение фазы распределения газов;
- наличие водяного насоса с электроприводом, системы климат-контроля и усиления руля, улучшенного качения покрышек;
- эффективность при работе на холостом ходу в городских условиях;
- возможность продолжительной поездки без дозарядки аккумулятора – заправляется бак;
- поддержка выбранного режима за счет компьютерного управления;
- низкий уровень шума работающего мотора.
К недостаткам моделей с гибридными установками относятся:
- необходимость регулярной нагрузки на АКБ;
- батарея может разряжаться до критического состояния при низкой температуре;
- проблемы с самостоятельным ремонтом машины;
- дорогая цена запчастей, которые не всегда есть в наличии в сервисных центрах.
Минусом для некоторых пользователей является высокая цена транспорта – даже недорогие японские гибридные автомобили Toyota Yaris стоят около 18 тыс. евро.
Подписи к слайдам
Слайд 1
Презентация Виды тепловых двигателей Выполнила: студентка группы 14К1 Коженова Полина
Слайд 2
Тепловые двигатели Паровая машина Газовая, паровая турбина Реактивн-ый двигатель ДВС Виды тепловых двигателей
Слайд 3
Тепловые машины реализуют в своей работе превращение одного вида энергии в другой. Таким образом машины-устройства которые служат для преобразования одного вида энергии в другой. Преобразуют внутреннюю энергию в механическую. Внутренняя энергия тепловых машин образуется за счет энергии топлива
Слайд 4
Парова́я маши́на -тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина двигатель внешнего сгорания, который преобразо-вывает энергию пара в механическую работу.
Слайд 5
Двигатель внутреннего сгорания-это тип двигателя, тепловая машина, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте.
Слайд 6
Газовая турбина это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагр-етого газа преобразуется в механическую работу на валу. Состоит из копрессора, соединённого напрямую с турбиной, и камерой сгорания между ними.
Слайд 7
Паровая турбина — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь совершает механическую работу на валу.
Слайд 8
Реактивный двигатель -создает необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело с большой скоростью истекает из двигателя, и в соответствии с законом сохранения импульса образуется реактивная сила,толкающая двигатель в противоположном направлении.
Слайд 9
Разнообразие видов тепловых машин указывает лишь на различие в конструкции и принципах преобразования энергии. Общим для всех тепловых машин является то, что они изначально у величивают свою внутреннюю энергию за счет сгорания топлива с последующим преобразованием внутренней энергии в механическую
Двигатель внутреннего сгорания
Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок. За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности. В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т. д.
Тепловые двигатели могут быть разделены на две основные группы:
1. Двигатели с внешним сгоранием.
2. Двигатели внутреннего сгорания.
Изучая тему урока “Двигатели внутреннего сгорания” в 8 классе мы заинтересовались этой темой. Мы живем в современном мире, в котором техника играет важную роль. Не только та техника, которую мы используем у себя дома, но и на которой ездим – автомобиль. Рассматривая машину, я убедился, что двигатели это необходимая часть автомобиля
Неважно будь это старая или новая машина. Поэтому мы решили затронуть тему двигателя внутреннего сгорания, который использовали и раньше и сейчас
Для того, чтобы понять устройство ДВС, мы решили создать его сами и вот, что у нас получилось.
Экологические аспекты
За время использования установок, выявлены экологические проблемы тепловых двигателей. Если раньше человечество не ощущало выбросов в атмосферу, то по мере роста производства и увеличения количества установок, влияние чувствуется в значительной степени. Содержание углекислого газа за счёт рассеивания тепла в окружающую атмосферу ведёт к усилению парникового эффекта, что сказывается на всём живом и увеличивает среднегодовые показатели температур на Земле. Глобальное потепление катастрофически повлияет на мировой океан и последствия для цивилизации будут непредсказуемы.
Очистка, глобальный контроль, применение новых экологических стандартов, вот что спасёт нашу планету. Применение новых, безвредных видов топлива, к которым относится водород, переход на возобновляемые виды энергии. Только объединённые усилия всех стран повлияют на ситуацию, действуя в общих интересах, убережём наш дом от полного вымирания.