Бесконтактные регуляторы напряжения

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Схема и принцип работы БСЗ

Все элементы системы связаны между собой и с двигателем следующим образом:

  • вал трамблёра вращается от приводной шестерни мотора;
  • установленный внутри распределителя датчик Холла подключён к коммутатору;
  • катушка соединяется линией низкого напряжения с контроллером, высокого — с центральным электродом крышки трамблёра;
  • высоковольтные провода от свечей зажигания подключаются к боковым контактам крышки главного распределителя.

Резьбовой зажим «К» на катушке соединён с плюсовым контактом реле замка зажигания и клеммой «4» коммутатора. Второй зажим с маркировкой «К» связан с контактом «1» контроллера, сюда же приходит провод тахометра. Клеммы «3», «5» и «6» коммутатора служат для подключения датчика Холла.

Главную роль в БСЗ «шестёрки» играет коммутатор, обрабатывающий сигналы датчика Холла и управляющий работой катушки

Алгоритм работы БСЗ на «шестёрке» выглядит так:

  1. После поворота ключа в замке напряжение подаётся на электромагнитный датчик и первую обмотку трансформатора. Вокруг стального сердечника возникает магнитное поле.
  2. Стартер вращает коленвал двигателя и привод распределителя. Когда между элементами датчика проходит прорезь экрана, образуется импульс, посылаемый коммутатору. В этот момент один из поршней находится близко к верхней точке.
  3. Контроллер посредством транзистора размыкает цепь первичной обмотки катушки. Тогда во вторичной образуется кратковременный импульс величиной до 24 тыс. вольт, идущий по кабелю к центральному электроду крышки трамблёра.
  4. Пройдя через подвижный контакт — бегунок, направленный в сторону нужной клеммы, ток поступает на боковой электрод, а оттуда — по кабелю к свече. В камере сгорания образуется вспышка, топливная смесь возгорается и толкает поршень вниз. Двигатель заводится.
  5. Когда следующий поршень достигает ВМТ, цикл повторяется, только искра передаётся другой свече.

По сравнению со старой контактной системой БСЗ вырабатывает более мощный искровой разряд

Для оптимального сгорания топлива в процессе работы мотора вспышка в цилиндре должна происходить на долю секунды раньше, чем поршень окажется в максимальном верхнем положении. Для этого в БСЗ предусматривается опережение искрообразования на определённый угол. Его величина зависит от оборотов коленчатого вала и нагрузки на силовой агрегат.

Корректировкой угла опережения занимается коммутатор и вакуумный блок трамблёра. Первый считывает количество импульсов от датчика, второй действует механически от разрежения, подведённого со стороны карбюратора.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.

Модель
КТ829В 750 8 А 60 В
BDX54C 750 8 А 100 В

В остальном работа ключа остаётся такой же.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Полупроводниковые и электронные реле

Полупроводниковые и электронные реле аналогичны по своему устройству полупроводниковым и электронным приборам. Они имеют всего лишь два состояния: открытое (проводящее) и закрытое (не проводящее).

Электронное реле

Оно имеет достаточно большое входное сопротивление, сопоставимое с сопротивлением разомкнутых контактов, при условии отсутствия положительного управляющего сигнала на сетке и отрицательного напряжения смещения, которое закрывает электронную лампу.

Если подать достаточно большое сеточное напряжение, лампа откроется и через нее начнет протекать ток, который будет определятся нагрузкой. При этом сопротивление лампы достаточно велико, что является существенным недостатком такого типа устройств.

Транзисторное реле

Схема его изображена ниже:

Принцип действия аналогичен электронному. Но его главным достоинством, по сравнению с электронным, есть его относительно небольшое сопротивление при открытом состоянии, а недостатком – относительно малое сопротивление при закрытом состоянии.

Тиристорное реле

Схема показана ниже:

При подаче импульса на управляющий электрод тиристор откроется и тем самым замкнет цепь. Такой вид является наиболее перспективным, но при применении обычного тиристора не возможно коммутировать постоянные токи, поскольку он останется открытым даже при снятии управляющего импульса. Чтоб закрыть тиристор необходимо или отключить анодное напряжение или приложить обратное напряжение. Но с появлением полностью управляемых тиристоров эта проблема уже практически решена.

Электронное реле времени

Их применяют вместо механических реле времени с часовым механизмом. В данной цепи выдержка времени создается цепью заряда конденсаторов от источника постоянного тока Е (на рисунке ниже):

Обмотку промежуточного реле РП подключают к источнику питания через триод (электронную лампу). Если ключ К замкнут, то конденсатор С зарядится до напряжения источника Е и электронная лампа будет заперта. Как только ключ К разомкнется, конденсатор С начнет разряжаться через резистор R с постоянной времени τ = CR. Напряжение на сетке триода будет падать и ток в обмотке реле РП будет возрастать, как только он достигнет значения тока срабатывания, реле сработает и замкнет нужный контакт.  Соответственно время срабатывания РП можно варьировать путем подбора резистора и конденсатора.

Проведение диагностики регулятора напряжения своими руками

Как проверить регулятор напряжения автомобиля для выявления неисправностей своими руками? Что лучше замерить своими руками — амперы или вольты, чем лучше воспользоваться. Для выявления неисправностей своими руками необходимо использовать мультиметр или вольтметр. Необходимо, чтобы на устройстве была шкала для измерений на 15-30 вольт. Диагностику неисправностей автомобильного реле на 40 ампер или ниже своими руками с помощью мультиметра необходимо осуществлять только при заряженном аккумуляторе.

Диагностика вышедшего из строя реле с помощью вольтметра

  1. Сначала необходимо включить зажигание.
  2. Запустите своими руками двигатель, дайте ему поработать, при этом фары необходимо включить. Пусть мотор работает, пока количество оборотов не составит около 2.5-3 тыс. Как правило, для этого необходимо подождать около 10 минут.
  3. При помощи вольтметра произведите замер напряжения на клеммах АКБ. Параметр должен составлять около 14.1-14.3 вольт.

В том случае, если во время диагностики показатели получились ниже или выше, лучше приобрести новое реле на 40 ампер. В ходе диагностики штекеры ни в коем случае нельзя перемыкать, поскольку это может привести к деформации и неработоспособности выпрямительного блока. Для получения более точных показателей необходимо убедиться в том, что ремень генератора натянут хорошо.

Магнитные реле

Действие таких реле основано на изменении проницаемости магнитной ферромагнетиков при насыщении. При ненасыщенном сердечнике, индуктивное сопротивление обмотки велико, при насыщенном – мало. Выполняют такие реле на магнитных усилителях имеющих внешнюю положительную обратную связь или с самонасыщением и работающих в релейном режиме (Кос ≈ 1).

Несмотря на свои достоинства, бесконтактные реле имеют и свои недостатки:

  • Относительно небольшая коммутируемая мощность;
  • Сопротивление в разомкнутом состоянии сравнительно с электромагнитным выше, а разомкнутом ниже;
  • Довольно чувствительны к перегрузкам, а также к различного рода помехам;

Поэтому при применении таких устройств нужно учесть все эксплуатационные и технико – экономические условия и сопоставить различные варианты.

Схема реле регулятора напряжения

Реле-регуляторы напряжения широко используются в системе электрооборудования автомобилей. Его основной функцией является поддержание нормального значения напряжения при изменяющихся режимах работы генератора, электрических нагрузках и температуре. Дополнительно схема реле регулятора напряжения обеспечивает защиту элементов генератора при аварийных режимах и перегрузках. С ее помощью происходит автоматическое включение силовой цепи генератора в бортовую сеть.

Принцип работы реле-регулятора

Конструкции регуляторов могут быть бесконтактными транзисторными, контактно-транзисторными и вибрационными. Последние как раз и являются реле-регуляторами. Несмотря на разнообразие моделей и конструкций, у этих приборов имеется единый принцип работы.

Значение напряжения генератора может изменяться в зависимости от того, с какой частотой вращается его ротор, какова сила нагрузочного тока и магнитного потока, который создает обмотка возбуждения. Поэтому в реле содержатся чувствительные элементы различного назначения. Они предназначены для восприятия и сравнивания напряжения с эталоном. Кроме того, выполняется регулирующая функция по изменению силы тока в обмотке возбуждения, если напряжение не совпадает с эталонной величиной.

В транзисторных конструкциях стабилизация напряжения выполняется с помощью делителя, подключенного к генератору через специальный стабилитрон. Для управления током используются электронные или электромагнитные реле. Автомобиль постоянно меняет режим работы, соответственно, это влияет на частоту вращения ротора. Задачей регулятора является компенсация этого влияния путем воздействия на ток обмотки.

Такое воздействие может осуществляться по-разному:

  • В регуляторе вибрационного типа происходит включение в цепь обмотки и выключение резистора.
  • В двухступенчатой конструкции обмотка замыкается на массу.
  • В бесконтактном транзисторном регуляторе выполняется периодическое включение и отключение обмотки в питающую цепь.

В любом случае,на ток оказывает влияние включенное и выключенное состояние элемента переключения, а также время нахождения в таком состоянии.

Схема работы реле регулятора

Реле регулятор служит не только для стабилизации напряжения. Это устройство необходимо с целью уменьшения тока, воздействующего на аккумулятор, когда автомобиль находится на стоянке. Ток в управляющей цепи прерывается, и электронное реле оказывается выключенным. В результате, ток перестает поступать в обмотку.

В некоторых случаях в выключателе зажигания падает напряжение, оказывая влияние и на регулятор. Из-за этого возможны колебания стрелок приборов, мигание осветительных и сигнальных ламп. Чтобы избежать подобных ситуаций применяется более перспективная схема реле-регулятора напряжения. К обмотке возбуждения дополнительно подключен выпрямитель, в состав которого входит три диода. Плюсовой вывод выпрямителя соединяется с обмоткой возбуждения. Аккумуляторная батарея на стоянке разряжается под действием малых токов, проходящих через цепь регулятора.

Работоспособность генератора контролируется реле, у которого контакты находятся в нормальном замкнутом состоянии. Через них поступает питание для контрольной лампы. Она загорается при включенном замке зажигания, а после запуска двигателя гаснет. Это происходит под действием генераторного напряжения, разрывающего замкнутые контакты реле и отключающего лампы от цепи. Горение лампы во время работы двигателя означает неисправность генераторной установки. Существуют разные схемы подключения, и каждая из них применяется индивидуально, в тех или иных типах автомобилей.

Автоматический регулятор напряжения

Регулятор напряжения для генераторов

Генераторы, используемые на электростанциях, судовых электростанциях или в резервных энергосистемах, будут иметь автоматические регуляторы напряжения (АРН) для стабилизации их напряжений при изменении нагрузки на генераторы. Первые АРН для генераторов были электромеханическими системами, но современные АРН используют твердотельные устройства. AVR — это система управления с обратной связью, которая измеряет выходное напряжение генератора, сравнивает его с заданным значением и генерирует сигнал ошибки, который используется для регулировки возбуждения генератора. По мере увеличения тока возбуждения в обмотке возбуждения генератора напряжение на его клеммах будет увеличиваться. AVR будет управлять током с помощью силовых электронных устройств; обычно небольшая часть выходной мощности генератора используется для обеспечения тока обмотки возбуждения. Если генератор подключен параллельно с другими источниками, такими как сеть электропередач, изменение возбуждения больше влияет на реактивную мощность, производимую генератором, чем на его напряжение на клеммах, которое в основном устанавливается подключенной энергосистемой. Если несколько генераторов подключены параллельно, система АРН будет иметь схемы, обеспечивающие работу всех генераторов с одинаковым коэффициентом мощности. Регуляторы напряжения на генераторах электростанций, подключенных к сети, могут иметь дополнительные функции управления, помогающие стабилизировать электрическую сеть от сбоев из-за внезапной потери нагрузки или неисправностей.

4.5 Основные технические данные

Отклонение входного рабочего напряжения: ±10%

Частота: 50/60 Гц ±5%

Сигналы управления: по световодам обеспечивают гальваническую развязку с
высоковольтной частью.

Удаленное управление: по выделенным цифровым входам (24 В постоянного
напряжения и 230 В переменного напряжения).

Удаленный мониторинг по выделенным цифровым выходам (сухие контакты).

Регулирование ограничений по току: в пределах

— 400% (по запросу потребителя)

Регулирование времени разгона: в интервале 1..30с.

Количество пусков: 2..3 в час при максимально допустимых режимах
двигателя (чаще — с принудительным воздушным охлаждением)

Стандартное исполнение: применяется для эксплуатации при температуре
окружающей среды от 0 до +40°C

Степень защиты шкафа: IP31

Цвет шкафа: RAL-7035

Кабельный ввод: снизу с лицевой стороны (другие варианты — по запросу)

Передача данных: опционная плата Profibus

Морское исполнение, технические данные:

Конструкция шкафа: рассчитана на максимальную температуру окружающей
среды +45°C

Печатные платы: имеют тропическое исполнение

Материал для шин: используется медь

Допустимое отклонение напряжения: +6/-10% припостоянном режиме и +/-20%
при кратковременном воздействии в течение 1,5с

Допустимое отклонение частоты: +/-5% при постоянном режиме и +/-10% при
кратковременном воздействии в течение 5с

Основные электрические компоненты: соответствуют требованиям морских
стандартов (регистров) типа (ABS, Lloyd, Rina, DNV…)

Проводятся испытания на: виброустойчивость и механическую прочность

Проводится проверка на: работоспособность в требуемых диапазонах рабочего
напряжения

При техническом обслуживании:

Подъем за рым-болты и ручное перемещение

Возможность блокировки и фиксации дверей

Возможность изолирования софтстартера с помощью вручную отсоединяемых шин
(для исполнений с внутренним или внешним байпасным контактором)

Возможность прямого пуска двигателя (в случае аварии тиристорного
преобразователя напряжения, двигатель можно пустить напрямую через байпасный
контактор)

Интерфейс человек-машина

Возможно выполнять локально: Измерения, Установка
Параметров, Просмотр Неисправностей, Диагностика Оборудования

Заключение

В настоящее время бесконтактные электрические аппараты широко применяются
в промышленности особенно в автоматизированном электроприводе, на транспорте, в
металлургии, самолетостроении и других областях техники. Это стало возможным
благодаря прогрессу в области производства высококачественных магнитных
материалов и полупроводниковых приборов. С каждым годом растут число разработок
и выпуск бесконтактных аппаратов, велико их многообразие, что, несомненно,
способствует научно-техническому прогрессу.

Список
литературы

Генератор ВАЗ 2106: назначение и функции

Автомобильный генератор — это небольшое электрическое устройство, главной задачей которого является преобразование механической энергии в электрический ток. В конструкции любого автомобиля генератор нужен для зарядки аккумулятора и подпитки всех электронных приборов в момент работы мотора.

Как именно работает генератор на автомобиле ВАЗ 2106? Все процессы преобразования энергии из механической в электрическую осуществляются по строгой схеме:

  1. Водитель поворачивает ключ в замке зажигания.
  2. Сразу же ток от аккумулятора через щётки и иные контакты поступает на обмотку возбуждения.
  3. Именно в обмотке появляется магнитное поле.
  4. Начинает вращаться коленвал, от которого приводится в движение и ротор генератора (генератор связан с коленвалом ременной передачей).
  5. Как только ротор генератора достигает определённой скорости вращения, генератор переходит в стадию самовозбуждения, то есть в дальнейшем все электронные системы запитываются только от него.
  6. Показатель работоспособности генератора на ВАЗ 2106 выводится в виде контрольной лампы на приборную панель, поэтому водитель всегда может видеть, достаточно ли заряда устройства для полноценной работы авто.

Устройство генератора Г-221

Прежде чем говорить об особенностях конструкции генератора ВАЗ 2106, следует уточнить, что он имеет уникальные фиксаторы для крепления на моторе. На корпусе устройства расположены специальные «ушки», в которые вставляются шпильки, закручиваемые гайками. А чтобы «ушки» не изнашивались в процессе работы, их внутренние части снабжены высокопрочной резиновой прокладкой.

Сам генератор состоит из нескольких элементов, каждый из которых мы сейчас рассмотрим в отдельности. Все эти устройства встроены в легкосплавный литой корпус. Чтобы прибор в процессе длительной работы не перегревался, в корпусе есть множество мелких отверстий для вентиляции.

Обмотка

В силу того, что генератор имеет три фазы, в нём устанавливаются сразу обмотки. Задача обмоток — генерировать магнитное поле. Разумеется, для их изготовления используется только специальная медная проволока. Однако для защиты от перегрева провода обмоток покрываются двумя слоями теплоизоляционного материала или лака.

Реле-регулятор

Так называется электронная схема, контролирующая напряжение на выходе из генератора. Реле необходимо для того, чтобы в аккумулятор и другие устройства попадало строго ограниченное количество напряжения. То есть основная функция реле-регулятора — контроль за перегрузками и поддержание оптимального напряжения в сети около 13.5 В.

Ротор

Ротор — это главный электрический магнит генератора. Он имеет всего одну обмотку и располагается на коленчатом валу. Именно ротор начинает вращаться после запуска коленвала и придаёт движение всем остальным частям устройства.

Щётки генератора

Щётки генератора находятся в щёткодержатели и нужны для выработки тока. Во всей конструкции именно щётки изнашиваются быстрее всего, так как на них ложится основная работа по генерации энергии.

Диодный мост

Диодный мост чаще всего называют выпрямителем. Он состоит из 6 диодов, которые размещаются на печатной плате. Главная работа выпрямителя — преобразовать переменный ток в постоянный, чтобы поддерживать стабильную работу всех электронных приборов автомобиля.

Шкив

Шкив — это приводной элемент генератора. Ремень натягивается одновременно на два шкива: коленвала и генератора, поэтому работа двух механизмов непрерывно связана между собой.

Назначение реле-регулятора напряжения на ВАЗ 2106

Как известно, система электроснабжения ВАЗ 2106 состоит из двух важнейших элементов: аккумулятора и генератора переменного тока. В генератор вмонтирован диодный мост, который автомобилисты по старинке называют выпрямительным блоком. Его задача — преобразовывать переменный ток в постоянный. А для того чтобы напряжение этого тока было стабильным, не зависело от скорости вращения генератора и сильно не «плавало», применяется устройство, называемое реле-регулятором напряжения генератора.

Внутренний регулятор напряжения ВАЗ 2106 отличается надёжностью и компактностью

Этот прибор обеспечивает постоянное напряжение во всей бортовой сети ВАЗ 2106. Если реле-регулятора не будет, напряжение будет скачкообразно отклоняться от среднего значения в 12 вольт, причём «плавать» оно может в очень широком диапазоне — от 9 до 32 вольт. А поскольку все потребители энергии на борту ВАЗ 2106 рассчитаны на работу под напряжением в 12 вольт, то без должного регулирования питающего напряжения они просто перегорят.

Конструкция реле-регулятора

На самых первых ВАЗ 2106 устанавливались контактные регуляторы. Увидеть такое устройство сегодня практически невозможно, поскольку оно безнадёжно устарело, а ему на смену пришёл регулятор электронный. Но для знакомства с этим устройством нам придётся рассмотреть именно контактный внешний регулятор, так как на его примере конструкция раскрывается наиболее полно.

Первые внешние регуляторы ВАЗ 2106 были полупроводниковыми и выполнялись на единой плате

Итак, основным элементом такого регулятора является обмотка из латунной проволоки (примерно 1200 витков) с медным сердечником внутри. Сопротивление у этой обмотки постоянное, и составляет 16 Ом. Кроме того, в конструкции регулятора имеется система вольфрамовых контактов, регулировочная пластинка и магнитный шунт. А ещё есть система резисторов, способ соединения которых может меняться в зависимости от требуемого напряжения. Наибольшее сопротивление, которое могут выдать эти резисторы, составляет 75 Ом. Вся эта система находится в прямоугольном корпусе из текстолита с выведенными наружу контактными площадками для подключения проводки.

Принцип работы реле-регулятора

Когда водитель запускает мотор ВАЗ 2106, вращаться начинает не только коленвал в двигателе, но и ротор в генераторе. Если скорость вращения ротора и коленвала не превышает отметку в 2 тыс. оборотов в минуту, то напряжение на выходах генератора не превышает 13 вольт. Регулятор при таком напряжении не включается, а ток идёт прямо на обмотку возбуждения. Но если скорость вращения коленвала и ротора возрастает, регулятор автоматически включается.

Реле-регулятор подключается к щёткам генератора и к замку зажигания

Обмотка, которая подключена к щёткам генератора, мгновенно реагирует на повышение оборотов коленвала и намагничивается. Сердечник, находящийся в ней, втягивается внутрь, после чего происходит размыкание контактов на одних внутренних резисторах, и замыкание контактов на других. К примеру, когда двигатель работает на малых оборотах, в регуляторе задействован лишь один резистор. При выходе двигателя на максимальные обороты включается уже три резистора, а напряжение на обмотке возбуждения резко падает.

Часто задаваемые вопросы от читателей

По мощности все просто, если вы собираетесь подключить только одну светодиодную лампочку, разумеется, с функцией диммирования, то необходимо взять модель выключателя с запасом по нагрузочной способности, хотя бы на 30 – 50%. Как правило, диммируемые выключатели выпускаются на мощность от 10 Вт – этого более чем достаточно для подключения лампы в 5 Вт.

По поводу конкретной модели выключателя, то здесь все немного сложнее, так как у них имеется параметр совместимости с конкретными моделями диммируемых светодиодных ламп. Чаще всего, в паспорте устройства можно найти перечень или таблицу с указанием конкретных моделей или производителей. Поэтому нужно смотреть конкретную лампочку и конкретный выключатель, в этом вопросе одной мощностью ограничится не получится.

По поводу того, что вы хотите именно модульный тип диммируемого выключателя, тоже не совсем согласен. Так как врезать в стол или устанавливать на поверхность может оказаться выгоднее другой тип. Я бы, попробовал сенсорный или в монтажную коробку, чтобы вообще спрятать. Но, это уже ваше индивидуальное пожелание, да стол нужно увидеть, чтобы понимать, куда вы хотите установить диммер, а куда лампу.

IGBT

Ещё один интересный класс полупроводниковых приборов, которые можно
использовать в качестве ключа — это биполярные транзисторы с
изолированным затвором (IGBT).

Они сочетают в себе преимущества как МОП-, так и биполярных
транзисторов: управляются напряжением, имеют большие значения
предельно допустимых напряжений и токов.

Управлять ключом на IGBT можно так же, как и ключом на MOSFET. Из-за
того, что IGBT применяются больше в силовой электронике, они обычно
используются вместе с драйверами.

Например, согласно даташиту, IR2117 можно использовать для управления
IGBT.

Пример IGBT — IRG4BC30F.

Управление нагрузкой переменного тока

Все предыдущие схемы отличало то, что нагрузка хоть и была мощной, но
работала от постоянного тока. В схемах была чётко выраженные земля и
линия питания (или две линии — для контроллера и нагрузки).

Для цепей переменного тока нужно использовать другие подходы. Самые
распространённые — это использование тиристоров, симисторов и реле.
Реле рассмотрим чуть позже, а пока поговорим о первых двух.

1.3 Дроссели насыщения с самоподмагничиванием

Схема простейшего ДН с самоподмагничиванием (МУС) приведена на рис. 2.7.
Цепь управления ДН состоит из обмотки управления wУ, балластного сопротивления
ZБ и источника управляющего напряжения ЕУ. Рабочая цепь — из последовательно
включенных рабочей обмотки wР, источника напряжения е с частотой f, нагрузки RН
и диода VD. Именно диодом в рабочей цепи отличается дроссель с
самоподмагничиванием от дросселя на рис. 2.1.

Благодаря диоду, по рабочим обмоткам ДН может протекать только
однополупериодный, выпрямленный ток — в этом принципиальное отличие ДН с
самоподмагничиванием от иных дросселей.

Постоянная составляющая тока в рабочей обмотке подмагничивает ДН и при
отсутствии тока управления, поэтому такой дроссель называется с
самоподмагничиванием. С изменением тока управления изменяется суммарное
подмагничивание дросселя, в результате изменяются ток и напряжение на нагрузке.
При этом, как правило, меньшим током или меньшей мощностью в цепи управления
управляют большим током или большей мощностью в нагрузке.

ДН с самоподмагничиванием на одном сердечнике обусловливает в нагрузке
однополупериодный выпрямленный ток и называется однополупериодным МУС.
Применение его ограничено тем, что нагрузку нельзя включить на переменном токе
и, кроме того, как и в простейшем ДН без подмагничивания, балластное
сопротивление должно быть велико, для того чтобы трансформируемое из рабочей
цепи переменное напряжение не создавало тока в цепи управления.

Балластное сопротивление делает схему неэкономичной. В этом случае часто
оказывается целесообразным использовать ДН с самоподмагничиванием на двух
сердечниках, каждый из которых представляет простейший ДН с самоподмагничиванием
и имеет в своей рабочей цепи диод.

Схемы на двух ДН обеспечивают двухполупериодный ток в нагрузке
(переменный или постоянный выпрямленный) и не нуждаются в балластном
сопротивлении в цепи управления.

Однополупериодный МУС входит как основная структурная ячейка практически
во все более сложные МУС; имеет и самостоятельное применение в бесконтактных
электроаппаратах.

На основе однополупериодного МУС разработаны измерительные трансформаторы
постоянного тока, стабилизаторы напряжения, регулируемые трансформаторы,
датчики положения и другие специальные схемы магнитных усилителей.

2.
Полупроводниковые бесконтактные элементы электрических аппаратов

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector