Схема плавного розжига и гашения светодиодной ленты

Подключение своими руками

В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.

Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:

Первый и самый важный шаг – обесточить розетку

Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.

Ослабляем винты на клеммах.

Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать). Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене

Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.

Привинчиваем винты монтажных лапок.

Крепим верхнюю рамку (коробку).

Плавное включение и выключение светодиодов: схемы розжига

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях.

Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками.

В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле. 14,5-3,3= 11,2 вольта. То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод. Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается. R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена. Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Можно ли сделать своими руками

Плату по описанной выше схеме можно сделать своими силами. Но, если нет опыта работы с транзисторами, светодиодами и резисторами, лучше приобрести блок в магазине. Сборка своими руками обойдётся намного дешевле. Если знать все тонкости, на работу уйдёт не более 1 часа. Для этого следует знать, как подобрать необходимые элементы и иметь оборудование, чтобы качественно выполнить соединения.

Что понадобиться для работы

Для изготовления устройства для плавного розжига светодиодов своими руками понадобится следующее:

  • припой и паяльник;
  • светодиоды;
  • резисторы;
  • конденсатор;
  • транзисторы;
  • корпус для размещения необходимых элементов;
  • для создания платы требуется кусок текстолитового листа.


Рис.2 – текстолитовый лист для пайки.

Ёмкость рекомендуемого конденсатора – 220 mF. Напряжение не более 16V. Номиналы резистора:

  • R1 – 12 kOm;
  • R2 – 22 kOm;
  • R3 – 40 kOm.

При сборке блоке желательно использовать полевой транзистор «IRF540».

Пошаговая инструкция изготовления своими руками

Для создания блока с плавным розжигом мастер должен уметь паять и знать принцип работы схемы и каждого из её элементов. Первый этап – это изготовление платы. Для начала на текстолите необходимо обозначить границы. После этого можно начать вырезать лист по контурам. Далее заготовку следует проштукатурить с помощью наждачной бумаги (зернистость P800-1000).

На следующем этапе нужно распечатать схему (слой с дорожками). Для этого используют лазерный принтер. Такую схему для распечатки можно найти в интернете. Лист А4 малярным скотчем приклеивается к глянцевой бумаге (например, с журнала). Затем следует приступить к распечатке изображения.


Рис.3 – схема после распечатки.

На лист схема приклеивается с помощью прогревания утюгом. Чтобы плата остыла, её нужно поместить в холодную воду на несколько минут, и после этого, снять бумагу. Если сразу она не отслаивается, это необходимость делать постепенно, сдирая пальцами.

Теперь понадобится двусторонний скотч чтобы приклеить плату к пенопласту такого же размера и поместить в раствор хлорного железа на 5-7 минут. Чтобы не передержать плату, её нужно периодически доставать и смотреть на состояние. Для ускорения процесса вытравливания можно иногда покачивать емкость с жидкостью. Когда лишняя медь стравиться, плату необходимо отмыть в воде.


Рис.4 – плата в растворе хлорного железа.

Следующий этап – это зачистка дорожек с помощью наждачной бумаги. Далее можно приступать к просверливанию дырочек для установки элементов платы. Для этого подойдут сверла диаметром до 1 см. Далее плату нужно облудить. Для этого её можно смазать флюсом, после чего облудить паяльником. Чтобы не спровоцировать перегрев или разрыв цепи, паяльник постоянно должен находиться в движении.


Рис.5 – подготовленная плата к установке элементов.

Следующий этап – это установка элементов по схеме. Чтобы было понятнее, на бумаге можно распечатать ту же схему, но со всеми необходимыми обозначениями. После пайки необходимо полностью избавиться от флюса. Для этого плату можно протереть растворителем 646. Затем её можно прочистить зубной щеткой. Когда блок хорошо просохнет, следует приступить к проверке. Для этого постоянный плюс и минус необходимо подключить к питанию. При этом, управляющей плюс трогать не стоит.


Рис.6 – проверка корректности работы платы.

Вместо светодиодов для проверки лучше использовать мультиметр. Если возникнет напряжение, это значит, что плата коротит. Это может происходить из-за остатков флюса. Чтобы избавиться от проблемы, достаточно прочистить плату ещё раз. Если напряжения нет, блок готов к использованию.

Сообщества › Сделай Сам › Блог › Подсветка ног с плавным розжигом и затуханием

Всем привет! Осуществил одну из давних хотелок) Досталась мне халявные 5 метров RGB ленты с контроллером и пультом дистанционного управления, вот и решил, что подсветке быть! И самое главное, чтоб все по феншую было — с плавным розжигом и плавным затуханием. Идея есть — смотрим варианты реализации в интернете, нашел много схем подключения, но нам подойдет только с управляющим минусом.

В Layout сделал компактную печатку и заЛУТил все это дело)

Далее нарезал ленту: на перед по 3 секции, для задних пассажиров по 2 секции.

В качестве проводки использовал провод от хорошего USB удлинителя. Ленту сделал модульной с USB соединением ленты спереди и ленты сзади, на случай перегорания секции светодиодов или простого отключения подсветки ног задних пассажиров. Соединение последовательное : контролер розжига > контролер ленты > лента 3 секции > лента 3 секции > соединение передней и задней ленты по USB > лента 2 секции > лента 2 секции.

Для каркаса крепления взял обычный кабель канал шириной 1 см и приклеил ленты, зафиксировав соединения кабеля и ленты стяжками.

Для подбора времени розжига и затухания ленты можно поэкспериментировать с сопротивлениями и емкостью конденсатора.

Ну а дальше начинается самое геморойное — установка. Снимаем защитный щиток справа в ногах переднего пассажира. В косе ищем толстый черный провод — общий минус, черный с голубым — управляющий минус и оранжевый с голубым — постоянный плюс.

Проверяем ленту на работоспособность и начинаем прокладывать ленту. Переднюю крепим к распорке под бордачком и под рулевой колонкой…

… и выкидываем конец в центральный тоннель в район подстаканников. Подсветку для задних пассажиров многие крепят прям на воздуховод, но я прикинул что там ее все будут пинать и прикрепил ее к низу передних сиденьев, пустив проводку в отверстия под ковролином где проходит проводка для подушек безопасности.

Долго думал как сделать доступным ИК приемник, чтобы оставить возможность менять цвет подсветки и придумал) Сам контролер ленты прячем под правым воздуховодом.

Метки: освещение, плафон, плавный пуск

Комментарии 43

подскажите, а биполярный транзистор подойдёт сюда(КТ837Д)?

а печатку в спринте рисовал? если да, то можешь мне скинуть?

Вечером посмотрю на домашнем компьютере, если осталась то скину.

в качестве дружеской критики: 1. вместо никнейма лучше було бы оставить полигон для тепло-отвода, да и вообще развести плату так, чтобы травить не надо было, а можно было бы расчертить канц.ножом на изолированные площадки 2. провода к плате не паять, а присоединять разъемом — когда захотите улучшить девайс, можно было просто его заменить

Тепло-отвод явно лишнее…Транзистор мощный, а диоды в плафоне потребляют совсем чуть чуть. Оно выше температуры окружающей среды и не нагревается. По поводу разметки платы канц ножом — ну не люблю я такой колхоз. Лучше потрачу лишние пол часа — час, но сделаю все красиво. Разъем стоит, только не на самой плате, а на пяти сантиметровом отрезке проводов. Так удобнее размещать устройство под потолком — сначала прилепил как надо, а потом и провода соединил.

а каким способом ты травил плату? каким наносил на тексталит ее?

Дорожки наносил с помощью фоторезиста. Травил в растворе перекиси водорода, соли и лимонной кислоты.

а я помню, раньше лаком дорожки рисовал… травил в хлорном железе))) так уже не делают?))) ппц я отстал…

Ну лаком сейчас уже наверное точно никто не рисует, проще тем же ЛУТом сделать. А вот хлорное железо я сам до недавнего времени использовал, пока не узнал про способ с перекисью водорода — и достать проще, и дешевле, да и все вокруг не пачкает)))

а каким способом ты травил плату? каким наносил на тексталит ее?

ТекстОлит. А вообще-то — это стеклотекстолит.

ну все, с умничал…

Нравится быть не грамотным — оставайтесь…

а вы часто пользуетесь текстолитом? раз тут оказался стеклотекстолит… я думаю и так понятно, что это за материал… ошибка в названии — да, запомнил как правильно. но. ошибкой не считаю, что материал для плат называю просто текстолитом. думаю многие так и говорят, что б не удлинять и так понятное слово. это как всегда добавлять аккумулятор свинцово-кислотный в машине. думаю и вы не добавляете. стеклотекстолит = текстолит. суть того, о чем идет речь ничуть не меняется.

Дело в том, что текстолит — это ткань пропитанная клеем. Он коричневого цвета. www.ru.all.biz/img/ru/catalog/2068698.jpeg Он не металлизируется и не используется для производства печатных плат.

А стеклотекстолит — это стеклоткань пропитааная эпоксидной смолой, он светоложёлтого цвета. И свойства материалов сильно отличаются.

Ещё в качестве диэлектрика для печатных плат используют гетинакс — это бумага, пропитанная клеем. Тоже, кстати, коричневого цвета.

В бытовой технике часто используется гетинакс (ранее преимущественно, только гетинакс использовался). Стеклотекстолит стал его вытеснять пару десятилетий назад.

Да, я давно занимаюсь электроникой, 40 лет уже. Первую печатную плату разработал и изготовил в возрасте 12 лет, т.е. в 1982 году…

Поделки своими руками для автолюбителей

Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.

Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.

Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе. Рассмотрим подробнее.

Подсветка приборки.

Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.

Немного о работе схемы…..:

После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.

При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.

Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.

При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503. Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.

По мере разрядки конденсатора гаснут светодиоды.

Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.

Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента. Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.

В схеме допускается производить регулировки:

Подсветка салона

Плавная подсветка салона имеет свои достоинства:

Светодиодная подсветка включается после срабатывания на дверях концевых выключателей.

Схема имеет вид:

В отличие от предыдущей схемы, управляющим здесь является напряжение –12 V, поступающее с концевых выключателей.

По сравнению с предыдущей, в схеме убраны отдельные элементы: транзистор КТ 503, диод D2 и резистор R1, но принцип работы прежний.

Схемы в формате .lay —

Сборка схемы

Элементы схемы размещаются на печатной плате, которая изготавливается с определённой последовательностью:

1. Готовим текстолитовую пластинку. Её размер зависит от количества элементов и их расположения. Вырезанную пластинку необходимо обработать мелкой наждачной бумагой и обезжирить.

2. Используя программу Sprint Layout, рисуем будущую плату. Для распечатывания рисунка, используется лазерный принтер в режиме высокой чёткости и качества изображения.

В программе выбирается режим, при котором будет напечатан только слой с дорожками без обозначений. Рисунок распечатывается на глянцевую страницу журнала или на фотобумагу.

3. К нагретой пластинке текстолита прикладываем распечатку и прижимаем горячим утюгом. Держим утюг несколько минут.

4. После остывания опускаем пластинку в холодную воду, и удаляем бумагу с поверхности.

5. В приготовленное хлорное железо, опускаем пластинку, закреплённую на кусочек пенопласта. Во время вытравливания можно вынимать и контролировать плату.

6. Протравленную пластинку отмываем в воде, и очищаем дорожки растворителем или наждачной бумагой.

7. В готовой плате сверлим отверстия для монтажа элементов. Используются свёрла 0,6 мм.

8. Облуживаем плату. Самый доступный способ — это кисточкой смазать плату флюсом, и пролудить паяльником

Важно не перегревать дорожки, чтобы они не отслоились

9. Устанавливаем на плату элементы схемы и пропаиваем.

10. В конце работ необходимо очистить плату от остатков флюса. У чистой платы не будет замыканий между дорожками.

В итоге рассмотрения, надо отметить, что описанные схемы успешно используются не только для электро тюнинга автомобиля. Их часто используют с различными устройствами, где есть питание +12 V.

Автор; Арсений Санкт-Петербург, Россия

Популярное;

  • Задержка включения ближнего света или ДХО на 8-10 секунд, схема
  • Простое электронное реле поворотников для ламп или светодиодов, схема
  • Простой регулятор напряжения на LM317, схема
  • Плавное включение и затухание ДХО
  • Преобразователь для зарядки конденсаторов
  • Плавный розжиг фар или светодиодов на микроконтроллере
  • Простой драйвер для светодиодов
  • Схема защиты АКБ от глубокого разряда

Совместимость

Для корректной работы светорегулятора со светодиодной лампой рекомендуют останавливать выбор на стандартных моделях, которые уже имеют в комплектации подходящий светодиод, либо приобретать ШИМ-диммер, используемый совместно со многими видами ламп.

Чтобы наверняка определить то, насколько выбранный вами механизм в состоянии корректно работать совместно с выбранной лампой, лучше всего воспользоваться эмпирическим методом. Для этого стоит перед покупкой ещё в магазине проверить правильное функционирование диммера с определённым видом освещения.

Консультант в этом случае всегда пойдёт навстречу клиенту и позволит проверить взаимодействие диммера и лампы не отходя от кассы.

Плавное включение ламп. Устройство для плавного включения.

Здравствуйте, дорогие читатели! В данной статье вы узнаете, как происходит плавное включение ламп, так же рассмотрим схемы подключения, места установки устройств для плавного включения ламп и многое другое.

Прошло уже много лет с момента изобретения лампы накаливания, но до сих пор это изобретение находит повсеместное применение во многих домах. Сравнивая лампу накаливания с более современными энергосберегающими лампами можно выделить одно существенное преимущество – сравнительно низкую стоимость. Именно поэтому многие выбирают для личного пользования лампы накаливания. Существует один неприятный момент – лампы накаливания очень часто выходят из строя, перегорают. Происходит это в основном в момент накала нити лампы.

Причинами выхода из строя лампы могут быть:

Исключив эти причины можно продлить ресурс использования лампы накаливания до 10 раз. Устройство плавного включения ламп позволяет значительно снизить влияние нестабильного напряжения питающей сети и защищает лампу в момент накала нити.

Сетевое напряжение, проходя через устройство плавного включения ламп, стабилизируется до необходимого значения. Исключаются как длительные изменения напряжения, так и кратковременные скачки. Благодаря этому влияние нестабильного напряжения сети на лампу значительно снижается. При использовании устройства плавного включения ламп накал нити происходит не сразу, а постепенно. Время накала может составлять от 2 до 5 секунд, в зависимости от величины подключенной нагрузки и характеристик используемого устройства.

Плавное включение ламп это ещё и своеобразный дизайнерский ход. Теперь включая освещение в темной комнате, вместо режущего глаза яркого света мы видим сначала тёплое свечение ламп, и только потом комната наполняется ярким светом. Довольно легко самостоятельно выполнить электромонтаж устройства плавного включения ламп.

Местом установки можно выбрать:

Плавное включение ламп, схема 1

Небольшие габариты устройства позволяют производить электромонтаж в любом удобном месте. Монтировать устройство плавного включения ламп необходимо в разрыв фазного провода, используя для этого специальные зажимы.

Плавное включение ламп, схема 2

Кроме ламп накаливания напряжением 220 вольт устройство плавного включения ламп может применяться с лампами накаливания, подключенными через понижающий трансформатор, а так же с галогеновыми лампами разного напряжения. При использовании ламп с понижающим трансформатором необходимо устанавливать УПВЛ (устройство плавного включения ламп) до трансформатора. При данном подключении мы защищаем от нестабильного напряжения не только лампы, но и сам трансформатор. Устройство нельзя применять с люминесцентными лампами и устанавливать после понижающего трансформатора.

Устройство для плавного включения ламп

Выбирая устройство плавного включения ламп нужно знать величину подключаемой через него нагрузки. Подсчитать количество ламп в цепи и их мощность не трудно. Для увеличения срока службы самого устройства желательно оставлять определённый запас по мощности. Допустим, если величина всех ламп в сети 800 ватт, то мощность УПВЛ должна составлять 1000 ватт.

В процессе эксплуатации устройства плавного включения ламп не требуют дополнительного обслуживания кроме проверки (и при необходимости протяжки) мест соединения. Гарантия производителей может составлять от 3 до 5 лет с момента продажи изделия. Установив устройство плавного включения, вы надолго забудете о необходимости замены ламп.

Лампа освещения для дома, разновидности и устройство.

Галогенные лампы для дома, их виды и устройство.

Почему перегорают светодиодные лампы? Что делать?

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Пример пользы

При поездках зимой на короткие дистанции, особенной в сильный мороз, большое количество энергии аккумулятора тратиться на запуск двигателя. Со временем аккумулятор теряет свою емкость и хуже держит заряд. Использование ДХО вместо ближнего света позволит быстрее заряжать батарею во время движения.

Посчитаем:

  1. ближний свет потребляет около 100вт, 2 лампы примерно по 50вт;
  2. приличные ДХО до 15W;
  3. 100вт – 15вт = 85W энергии будет потребляться меньше.

Например, у меня в Дастере стоит штатный ТЭН, который греет салон пока не прогрелся двигатель. Соответственно, автомобиль будет прогреваться быстрее.

Здравствуйте Сергей! Купил я себе ДХО вот такой модели с контролером ДХО В ПОВОРОТНИКИ 2 В 1 ЦОКОЛЬ 1156 BA15S СВЕТОДИОДНЫЕ и контролер такой как Вы выше показали, нужна помощь его подключения , схема есть но не доработана по моему мнению. раньше бы знал что Вы есть на сайте то с Вами посоветовался , а теперь прошу разъяснить мне как подключить контролер к ДХО Видео искал но там показывают простое подключения которое и так понятно а вот куда подлючить контролер я так понимаю он выполняет роль стабилизатора напряжения но тогда получается нужно зачистить до резистора или после ? не могу понять. Спасибо. Олег.

Контроллер подключается к лампам и питанию, тут всё просто. Спросите там где покупали, они точно знают схему подключения.

Здравствуйте, сгорел контроллер дхо osram drl 401 пришлось искать аналог , нашел похожий в китае который не приглушает свет а полностью выключает при включении габаритов , заметил странную особенность неприятное мерцание светодиодных ламп причем только на холостых оборотах , контроллер брал не самый дешевый рублей за 700 с хорошим жгутом проводов , а сегодня вечером после выключения ближнего Led лампы вообще загорелись на 10% от своей яркости не ужели второй контроллер сдох, машина Honda CR-V 2008 куда копать дальше незнаю, прошу совета

Чтобы проверить исправность блока протестируйте его отдельно, чтобы не грешить цепи в авто. Китайские блоки ДХО имеют много брака, у меня коллега пробовал разные покупать, многие сгорели.

Здравствуйте Сергей. Вместе с б/у бампером митсубиши аутлендер пришли, кустарно установленные дхо, по виду ну очень кошерные (ARL 0200 13677 NCC/ML-018SAE PY2 06). На проводе подключения висела лейба ( Never connect light without driver to 12V.) Подключил через стабилизатор КРЕН8, предварительно проверив выход-12,08В, полярность определил прозвонкой и….они сгорели нахально вспыхнув на последок. Подскажите пожалуйста, на какие грабли я наступил, может кто другой прочитает и не споткнется. С уважением николай.

Там стоял драйвер, который стабилизировал ток. А вы подключили источник напряжения. Ток получился большим, вот диоды и сгорели.

Все отлично.вопрос-по незнанию купил дхо FT-DRL-046 подключаю через генератор но от бл.управления идут еще 2 белых и 1 синий как их подключать. Точнее какой провод на ближний.у меня газ-31105 спасибо.

Лучше спросите в магазине, в котором покупали, они точно знают. или можно у производителя.

Всем привет, сегодня хочу поделиться схемой плавного включения и плавного затухания светодиодов. Данную схему можно воткнуть куда ваша душа пожелает, привожу схему как с управляющим минусом, так и с управляющим плюсом. Схема не требует каких-либо дополнительных настроек и работает сразу.

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Простейшая схема плавного розжига и затухания светодиодов

Цепи управления: реле может работать в цепях с управлением по «минусу» и по «плюсу», то есть заменяет и DRLN-A. Разумеется, что для подключения можно использовать провода с клеммами «переходники» вместо любого типа реле. Реле DRLM подходит для управления светодиодными лампами только при «плюсовом» управлении по входу. Электронное реле DRL — революционный шаг в вопросе управления фарами: микрогабариты устройства при значительно большем рабочем токе — внешне копия стандартного реле Коммутирует ток до 10А, напряжение до 18В. Монтаж и установка очень простые: просто заменяется штатное реле. При разогреве нити ток снижается до рабочего тока для данной лампы. Показать все отзывы 4 или написать собственный отзыв.

Характеристики и функции устройства

Диммеры различаются по диапазону действия, мощности (максимальной величине нагрузки) и способу регулирования освещения.

Диммер для светодиодных ламп регулирует порядок зажигания, яркость свечения, режим мигания и затемнения, а в некоторых случаях даже цвет светодиодов. С помощью диммера источники света могут отключаться от сети автоматически. Прибор работает дистанционно или по заданной программе, регулирующей время включения и отключения света. Диммер устанавливается вместо обычного выключателя.

С помощью диммера источники света могут отключаться от сети автоматически

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: