Наддув, нагнетатели и немного истории

Описание товара: ФОРСИРОВАНИЕ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ НАДДУВОМ

Форсирование двигателя внутреннего сгорания наддувом.

В пособии изложены основные положения форсирования двигателей внутреннего сгорания путем использования различных систем наддува. Рассмотрены основные схемы комбинированных ДВС, основные схемы применяемых для наддува компрессоров. Проанализированы мероприятия, проводимые при модернизации двигателей оснащением их разными системами наддува, проводится анализ систем наддува как дизелей, так и бензиновых двигателей, рассматривается влияние системы наддува на тяговые характеристики двигателей.

Пособие предназначено для студентов, обучающихся по направлению Энергомашиностроение специализации Двигатели внутреннего сгорания. Книга может быть также полезна инженерно-техническим работникам, владельцам автомобилей и всем интересующимся проблемой наддува ДВС.

Мягкий переплет. 176 стр.

ISBN 5-1188850-164-6

СОДЕРЖАНИЕ КНИГИ ФОРСИРОВАНИЕ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ НАДДУВОМ

ВВЕДЕНИЕ 6 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ 81.1. Введение в проблему наддува ДВС 81.2. Двигатели с всасыванием из атмосферы и двигатели с наддувом 91.3. Наддув дизелей и двигателей с внешним смесеобразованием и принудительным зажиганием 101.4. Методы организации наддува 111.5. Турбонагнетатели 131.6. Модификации двигателей при применении наддува 141.7. Достоинства и недостатки применения наддува 181.8. Краткая историческая справка 21 2. КОМПРЕССОРЫ 252.1. Основные типы компрессоров для наддува ДВС 252.2. Поршневые компрессоры (компрессоры с возвратно — поступательным движением рабочего органа) 262.3. Области применения поршневых компрессоров 292.4. Объёмные компрессоры 332.4.1. Пластинчатые компрессоры 342.4.2. Лопастные компрессоры 352.4.3. Характеристики объёмных компрессоров, их достоинства и недостатки 392.5. Винтовые, объёмные компрессоры типа Элиот Лисхольм 412.6. Компрессор объёмного типа с кольцевым поршнем 432.7. Области применения объёмных компрессоров 442.8. Центробежные (лопаточные) компрессоры 462.9. Преимущества и недостатки лопаточных компрессоров 482.10. Компрессоры — обменники давлением 502.11. Устройство и работа системы Компрекс 512.12. Характеристики компрессоров Компрекс 552.13. Достоинства и недостатки системы Компрекс 56 3. ТУРБОКОМПРЕССОРЫ 583.1. Основные положения 583.2. Особенности конструкции роторов 613.3. Расположение подшипников 643.4. Уравновешивание осевых усилий 673.5. Основные схемы газотурбинного наддува 673.6. Регулирование турбокомпрессоров с помощью клапанов перепуска газов или воздуха 733.7. Расходная характеристика двигателя 79 4. ОСНОВНЫЕ МОДИФИКАЦИИ КОНСТРУКЦИИ БЕЗНАДДУВНОГО ДВИГАТЕЛЯ ПРИ МОДЕРНИЗАЦИИ ЕГО НАДДУВОМ 814.1. Общие положения 814.2. Компрессия в цилиндре 824.3. Степень сжатия 844.4. Модификации поршней 854.5. Камера сгорания 884.6. Клапаны 904.7. Цилиндр и блок цилиндров 924.8. Изменения фаз газораспределения 934.9. Процессы топливоподачи 954.10. Охлаждение двигателя 984.11. Охлаждение поршней 1004.12. Смазывание деталей и фильтрация масла 106 5. СИСТЕМЫ ПУСКА, ВПУСКНЫЕ И ВЫПУСКНЫЕ КОЛЛЕКТОРА И ПРОМЕЖУТОЧНОЕ ОХЛАЖДЕНИЕ ВОЗДУХА 1105.1. Пуск двигателя с наддувом 1105.2. Впускные и выпускные коллектора 1145.3. Выпускные коллектора 1155.3.1. Постоянное давление газов перед турбиной 1155.3.2. Система импульсного наддува 1175.3.3. Преимущества и недостатки систем импульсного наддува и наддува при постоянном давлении 1255.3.4. Применение преобразователей импульсов 1265.3.5. Компенсаторы расширений коллекторов 1295.4. Охлаждение наддувочного воздуха 1305.4.1. Основные положения 1305.4.2. Теплообменники и системы охлаждения наддувочного воздуха 131 6. НАДДУВ ДВИГАТЕЛЕЙ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ 1366.1. Историческая справка 1366.2. Регулирование двигателей с турбонаддувом 1396.2.1. Регулирование угла опережения зажигания 1416.2.2. Регулирование давления наддува 1416.2.3. Регулирование угла опережения зажигания и давления наддува 1436.3. Регулирование газодинамического наддува 147 7. СПЕЦИАЛЬНЫЕ СИСТЕМЫ НАДДУВА 1507.1. Характеристики желательного протекания крутящего момента 1507.2. Наддув двухтактных ДВС 1527.3. Применение дополнительного приводного компрессора 1557.4. Комбинированный двигатель с дифференциальным наддувом 1567.5. Системы наддува Максидайн и Типербар 1587.6. Двухступенчатый наддув 1627.7. Динамический наддув 166 Список литературы 168

Рис. 3. Принцип действия, устройство и схема наддува двигателя Компрекс

1 — выпускной трубопровод; 2 — впускной трубопровод; 5 — выход из ротора в выпускной трубопровод; 4 — подвод воздуха от фильтра.

Основной частью устройства является ротор с продольными и открытыми с обоих концов каналами, соединяющими впускные и выпускные трубопроводы. Когда при вращении ротора открывается канал, соединяющийся с выпускным трубопроводом А двигателя, отработавшие газы поступают в канал ротора и вытесняют из них воздух во впускной трубопровод Б и далее в цилиндры двигателя. При дальнейшем повороте ротора сначала перекрывается доступ отработавших газов в канал, а сжатый воздух может еще в течение некоторого времени выходить в открытый впускной трубопровод. Вскоре после закрытия канала, ведущего во впускной трубопровод, открывается канал, соединяющийся с выпускным трубопроводом 1, в котором давление газов ниже. Поэтому отработавшие газы, сжатые в продольных каналах, расширяются и по выпускному трубопроводу 1 выходят в атмосферу. Когда давление в продольном канале снизится, откроется другой конец канала, ведущий во впускной трубопровод 2, и под действием возникающей волны разрежения в канал из атмосферы засасывается новая порция свежего воздуха. В результате продольный канал очистится от отработавших газов и наполнится чистым воздухом. Продолжительность открытия каналов должна быть такой, чтобы отработавшие газы не проникли во впускной трубопровод.

Частота вращения ротора устройства Компрекс и длина продольных каналов в роторе подбираются с таким расчетом, чтобы волна давления успела пройти в течение времени открытия канала с одного его конца до другого. Для того чтобы частота вращения ротора не получилась слишком большой, на каждой стороне ротора имеется два входа и два выхода. За один оборот ротора волна давления в обоих направления проходит дважды. Ранее привод ротора нагнетателя Компрекс осуществлялся от коленчатого вала с помощью клиноременного вариатора; в настоящее время привод ротора осуществляется с помощью клиноременной передачи с постоянным передаточным отношением, при этом максимальная частота вращения ротора составляет 14000 об/мин.

Нагнетатель Компрекс сочетает достоинства турбонагнетателя — низкий удельный расход топлива и малые габариты — и нагнетателя с механическим приводом — плоскую кривую крутящего момента с максимумом при низких частотах вращения, а также быструю реакцию на изменение частоты вращения двигателя. Расчет системы наддува Компрекс весьма трудоемок, и разработка ее основана больше на экспериментальных доводках.

Поделитесь этой страницей в соц. сетях или добавьте в закладки:
Другие материалы о двигателях на сайте:
Способы повышения мощности двигателя своими руками
Как измерить компрессию?
Уход за двигателем автомобиля: главные моменты
Ремонт и диагностика дизельного двигателя
Причины перегрева двигателя автомобиля

Центробежный нагнетатель

Центробежный нагнетатель

Подобные нагнетатели получили в настоящее время наибольшее распространение,
как в виде отдельного приводного компрессора, так и главным образом в составе
турбонаддува.

Основная деталь центробежного нагнетателя – рабочее колесо, или крыльчатка.
Она имеет довольно сложную конусообразную форму. Лопатки крыльчатки играют самую
главную роль. От того, насколько правильно они спроектированы и изготовлены,
зависит результирующая эффективность всего нагнетателя. Итак, воздух, пройдя по
сужающемуся воздушному каналу в нагнетатель, попадает на радиальные лопасти
крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии
кожуха, где имеется диффузор. Зачастую диффузор имеет лопатки (порой с
регулировкой угла атаки), призванные снизить потери давления. Далее воздух
выталкивается в окружной воздушный туннель (воздухосборник), который чаще всего
имеет улиткообразную форму (воздухосборник, описывая окружность, постепенно
расширяется в диаметре). Такая конструкция создает необходимое давление
воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух
поначалу движется быстро, и его давление мало. Однако в конце улитки русло
расширяется, скорость воздушного потока понижается, а давление увеличивается.

В силу самого принципа работы у центробежного нагнетателя есть один
существенный недостаток. Для эффективной работы крыльчатка должна вращаться не
просто быстро, а очень быстро. Фактически производимое центробежным компрессором
давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 
тыс. об/мин и более, а для высоконапорных компрессоров дизелей они приближаются
к 200 тыс. об/мин. И в том случае если привод осуществляется от двигателя
посредством ременной передачи на шкив турбины, шум от такого устройства довольно
сильный. Проблема шумности и ресурса элементов привода частично снимается
введением дополнительного мультипликатора, который снижает КПД механического
нагнетателя.

Высокие рабочие обороты накладывают особые требования на качество
используемых материалов и точность изготовления (учитывая огромные нагрузки от
центробежных сил). К минусам самого принципа нагнетания можно также отнести
некоторую задержку в срабатывании. Как правило, центробежный нагнетатель дает
прибавку в мощности на довольно высоких оборотах двигателя. Сначала давление
нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает

Эта особенность делает центробежные нагнетатели наиболее пригодными для тех
случаев, когда более важно поддержание высоких скоростей, а не интенсивность
разгона

Центробежные нагнетатели очень популярны: сравнительно низкая цена и простота
установки способствовали тому, что компрессоры этого типа почти вытеснили
другие, более дорогие и сложные типы, особенно в сфере тюнинга. Недостатки
данного типа нагнетателей известны: повышенные шум и износ, эффективная прибавка
мощности только на высоких оборотах.

Нагнетатели типа «Лисхольм»

Схема нагнетателя типа «Лисхольм»

Следует также рассказать о винтовом нагнетателе или нагнетателе типа
«Лисхольм» («Lysholm»). Компрессоры данного типа иногда используются для
увеличения мощности двигателя. Первый в мире винтовой нагнетатель был изготовлен
и запатентован шведским инженером Альфом Лисхольмом в 1936 г. Он также как и
«Рутс» относится к роторным объёмным нагнетателям. Два ротора с
взаимодополняющими профилями захватывая поступающий воздух, начинают взаимное
встречное вращение. Порция воздуха проталкивается вперед вдоль роторов. Роторы
имеют между собой чрезвычайно малые зазоры — это обеспечивает высокую
эффективность и довольно малые потери. Основное отличие винтового компрессора от
объемных роторно-шестеренчатых нагнетателей – наличие внутреннего сжатия,
следовательно, не возникает дополнительной турбулентности как у
рутс-компрессоров. Это обеспечивает им высокую эффективность нагнетания
практически на всей шкале оборотов двигателя. Для достижения больших значений
давления может потребоваться охлаждение корпуса компрессора.

Нагнетатель типа «Лисхольм»

Основные плюсы нагнетателей типа «Лисхольм»: высокая эффективность (КПД
порядка 70%), надежность и компактная конструкция. Кроме того, винтовые
компрессоры довольно тихие при правильном проектировании и изготовлении. Здесь и
кроется единственный их минус. Дело в том, что роторы этих компрессоров имеют
очень сложную форму и, как следствие, дороги. По этой причине нагнетатели
«Лисхольм» практически не встречаются в массовом автомобильном производстве. По
той же причине и компаний, производящих эти прогрессивные нагнетатели, не так
много.

Нагнетатель типа «Рутс»/«Итон»

Схема работы нагнетателя типа «Рутс»/«Итон»

Братья Рутс разработали свой нагнетатель еще в 1859 г. Он относится к
объёмным роторным шестерённым машинам для подачи газовых сред. Первоначально он
использовался как вентилятор для проветривания промышленных помещений.
Конструкция его была очень проста: две вращающиеся в противоположных направлениях
прямозубые «шестерни», помещенные в общий кожух, перекачивают объемы воздуха от
впускного коллектора до выпускного в пространстве между своими зубьями и
внутренней стенкой корпуса.

В 1949 году другой американский изобретатель – Итон (Eaton) –
усовершенствовал конструкцию: прямозубые «шестерни» превратились в косозубые
роторы, а воздух стал перемещаться не поперек их осей вращения, а вдоль. Принцип
работы при этом не изменился — воздух внутри агрегата не сжимается, а просто
перекачивается в другой объем, отсюда и название — объемный нагнетатель.

Нагнетатель «TVS»

В настоящее время совершенствование нагнетателей данного типа идёт по пути
увеличения количества зубьев-лопаток, если первоначально в нагнетателе Итона
было по две лопатки на роторе, то сегодня их число достигло четырёх – «Eaton»
TVS» . Увеличение числа лопаток позволяет сгладить
основной недостаток нагнетателей типа «Рутс» – неравномерность подачи воздуха,
создающую пульсацию давления. Кроме того, для тех же целей впускное и выпускное
окно компрессора делают треугольным. Эти конструктивные ухищрения позволяют
добиться того, что такие компрессоры работают достаточно тихо и равномерно.
Компрессоры подобного типа имеют ещё один существенный недостаток. При
выдавливании несжатого воздуха в сжатый в нагнетательном трубопроводе создается
турбулентность, способствующая росту температуры воздушного заряда, поэтому
наряду с обычным ростом температуры от непосредственно повышения давления
происходит дополнительный нагрев. В этой связи современные нагнетатели данного
типа в обязательном порядке оснащаются интеркулерами.

Механический наддув c нагнетателем «Рутс»/«Итон»

Сегодня современные технологические возможности вывели подобные компрессоры
на очень высокий уровень производительности. Основные преимущества нагнетателей
«Рутс» заключаются в простоте конструкции (малое количество деталей и малая
скорость вращения роторов делают такие нагнетатели очень долговечными),
компактности, эффективности на малых и средних оборотах двигателя, низком уровне
шума по сравнению с центробежными компрессорами.

Динамический наддув (скоростной или пассивный наддув)

Система динамического наддува (также называемого скоростным или пассивным наддувом) увеличивает давление на впуске двигателя. Рост давления во впускном коллекторе достигается за счет воздухозаборников особой формы, которые при увеличении скорости движения начинают буквально загонять воздух в двигатель.

Заметный эффект от пассивного наддува начинает проявляться при больших скоростях движения (более 150 км/ч), поэтому на обычных автомобильных двигателях система динамического наддува встречается крайне редко, но иногда применяется на спортивных мотоциклах и автомобилях, а также широко используется для наддува поршневых авиационных двигателей. Нередко пассивный наддув объединяют с другими видами наддува, делая воздухозаборник соответствующей формы.

На «тюнингованных» автомобилях часто выводят впускной тракт на капот или в решетку радиатора, т. е. в зону максимального давления, чем имитируют систему динамического наддува (ниже на рисунке приведена подобная система). Почему имитируют? Потому что пассивный наддув, как уже было написано выше, начинает работать только на высоких скоростях. Также при подобном «тюнинге» ставят «фильтр нулевого сопротивления», который плохо справляется с очисткой поступающего воздуха, что приводит к усиленному износу двигателя.

Динамический наддув
«Тюнинг». Впускной тракт выведен вместо фары.
«Инерционный» наддув
Разновидность динамического наддува. Внутри патрубка системы установлена крыльчатка, благодаря инертности (поэтому некоторые и наывают такой наддув «инерционным») вращения которой возникает завихрение поступающего воздуха, что обеспечивает его максимально быстрое проникновение в камеры сгорания и более полное их наполнение топливо-воздушной смесью. В общем, ерунда полная, на которую ведутся горе-тюнеры.

Преимуществом динамического наддува является то, что это самый дешевый способ относительно остальных.

Последнее обновление 15.11.2012Опубликовано 22.08.2010

Сноски

  1. По другим данным он запатентовал сам принцип использования наддува на автомобиле.
  2. О нагнетателе «TVS» на сайте компании «Eaton».
  3. Описание работы системы «Comprex» дано по книге Мацкерле Ю. «Современный экономичный автомобиль» (книга есть в ).

Комментарии

Все материалы, представленные на данном сайте, защищены законодательством в области авторского права.
Смотрите публикация Ваших материалов, условия перепечатки материалов, соблюдение авторских прав.Дизайн и поддержка – Владимир Егоров, icarbio.ru 2010-2014 .

Прочие типы нагнетателей

В 80-х годах прошлого столетия компания «Volkswagen» экспериментировала с
довольно необычными спиральными нагнетателями. В автомобильном применении они
более известны как «G-Lader». Сейчас это направление компанией VW свернуто. Идея
спирального одноосевого нагнетателя также очень стара. В 1905 году изобретатель
Леон Креукс подал заявку на патент. Первоначально предусмотренный в качестве
паровой машины, такой нагнетатель имел два спиральных витка, расположенных один
в другом. В течение десятилетий он совершенствовался и, в конце концов,
превратился из первоначальной четырехструйной машины в восьмиструйную, которая
была оснащена двумя камерами — внутренней и внешней — по обеим сторонам с углом
разворота 180 градусов относительно друг друга. Но тогда о массовом производстве
таких нагнетателей можно было только мечтать, потому что в то время еще
отсутствовали соответствующее технологии и оборудование. Сложность производства
заключалась также в том, что изготовление деталей должно было быть максимально
точным, так как любое отклонение в структуре или качестве поверхности могло
привести к значительному снижению КПД. Поэтому в качестве нагнетательного
аппарата для автомобильного двигателя спиральный нагнетатель стал использоваться
очень поздно. С середины восьмидесятых до 1992 года его серийно использовал лишь
«Volkswagen» в моделях «Polo», «Corrado», «Golf» и «Passat». Однако ряд фирм
(преимущественно немецких) продолжают производить такие компрессоры и сегодня.

Также спиральный нагнетатель имеет важные преимущества: высокий КПД (75,9% у
прототипов) и низкий уровень шума, хорошее уплотнение (благодаря чему наличие
давления наддува проявлялось уже на малых оборотах) и малые потери на трение.

Поршневые нагнетатели, самая распространенная схема обычных воздушных
компрессоров в настоящее время, в автомобилях не прижились совсем. А вот на
судовых моторах они использовались достаточно широко. Интересен метод нагнетания
подпоршневым насосом. Здесь в качестве нагнетателя используется сам поршень,
который при движении к НМТ (нижняя мертвая точка) выталкивает находящийся под
ним воздух.

Схема шиберного нагнетателя

Следует упомянуть незаслуженно забытые в автомобилестроение шиберные, или
лопастные, нагнетатели. Это довольно простые по конструкции и принципу действия
машины. Цилиндрический корпус имеет два отверстия, как правило, растянутые во
всю длину цилиндра и находящимися на одной его стороне, т. е. не строго друг
против друга. Внутри корпуса находится ротор диаметром примерно в три четверти
от внутреннего диаметра корпуса. Ротор смещен к одной из сторон корпуса,
примерно посредине отверстий. В роторе несколько продольных канавок, в которых
находятся шиберы (лопатки). При вращении ротора благодаря заложенному
конструкцией эксцентриситету и шиберам, выдвигающимся за счет центробежных сил,
воздух сперва всасывается в одну из долей, образованных парой соседних лопаток,
а затем сжимается до момента подхода к выпускному отверстию.

Будучи качественно изготовленными, такие компрессоры нагнетали довольно
большое давление. В сравнении с рутс-компрессорами они обладали более высоким
КПД, меньше пропускали воздуха, практически не нагревали его и были менее
шумными. Да и мощности двигателя они отнимали меньше. Хорошо сконструированный
шиберный нагнетатель может быть на 50% более производительным, нежели
рутс-компрессор. В силу своей конструкции самой большой проблемой шиберных машин
были высокие фрикционные нагрузки между шиберами и корпусом. По мере износа КПД
компрессора заметно падал из-за увеличения протечек воздуха. В связи с этой
проблемой шиберные компрессоры делали низкооборотными, но довольно габаритными.
Это стало практически непреодолимой проблемой, и шиберные компрессоры были
забыты. В настоящее время появляются новые материалы и технологии, которые
делают вновь востребованными старые технические решения и конструкции.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: