Как заряжать ni cd аккумулятор: разновидности зарядных устройств, процесс заряда и разрядки

Особый случай.

Внимание!
Производители не гарантируют нормальную работу аккумуляторов 
при зарядных токах превышающих ток ускоренной зарядки
Iзар должен быть меньше емкости
аккумулятора. Так для аккумуляторов емкостью 2500ма*час он должен
быть ниже 2,5А

Бывает, что NiMH элементы после
разрядки имеют напряжение менее 1,1 В. В этом случае необходимо
применить прием описанный в приведенной выше статье в журнале МИР
ПК. Элемент или последовательная группа элементов подключается к
источнику питания через автомобильную лампочку 21 Вт.

Еще раз обращаю Ваше внимание! У таких
элементов обязательно надо проверить саморазряд! В большинстве
случаев именно элементы с пониженным напряжением имеют
повышенный
саморазряд. Эти элементы проще выкинуть

Зарядка предпочтительна индивидуальная для каждого элемента.

Для двух элементов напряжением 1,2 В зарядное напряжение
не должно превышать 5-6В. При форсированной зарядке лампочка
одновременно является индикатором. При снижении яркости лампочки
можно проверить напряжение на NiMH
элементе. Оно будет больше 1,1 В. Обычно, эта начальная, форсированная зарядка
занимает от 1 до 10 минут.

Если NiMH элемент, при форсированной
зарядке в течении нескольких минут не увеличивает напряжение,
греется — это повод снять его с зарядки и отбраковать.

ВЫВОДЫ:

Рекомендую применять зарядные устройства только с возможностью
тренировки (регенерации) элементов при перезарядке. Если нет таких,
то через 5-6 рабочих циклов в аппаратуре, не дожидаясь
полной потери емкости, производить их тренировку и
отбраковывать
элементы имеющие сильный саморазряд.

 И они Вас не
подведут.

В одном из форумов прокомментировали эту статью
«
написано тупо, но больше ничего нет
«. Так Вот это не»тупо», а просто и
доступно для выполнения на кухне каждому кто нуждается в
помощи.
Т.е. максимально просто. Продвинутые могут поставить
контроллер, подключить компьютер, …… , но это уже
другая история.

Чтобы не казалось тупо

Существуют «умные» зарядники для
NiMH элементов.

Такой зарядник работает с  каждым аккумулятор
отдельно.

Рис. 5

Он умеет:

  1. индивидуально работать с каждым
    аккумулятором в разных режимах,
  2. заряжать аккумуляторы в быстром и медленном
    режиме,
  3. индивидуальный ЖК дисплей для каздого
    аккумуляторного отсека,
  4. независимо заряжать каждый из аккумуляторов,
  5. заряжать от одного до четырех аккумуляторов
    разной емкости и типоразмера (АА или ААА),
  6. защищать аккумулятор от перегрева,
  7. защищать каждый аккумулятор от перезарядки,
  8. определение окончание зарядки по падению
    напряжения,
  9. определять неисправные аккумуляторы,
  10. предварительно разряжать аккумулятор до
    остаточного напряжения,
  11. восстанавливать старые аккумуляторы
    (тренировка заряд-разряд),
  12. проверять емкость аккумуляторов,
  13. отображать на ЖК дисплее: — ток заряда,
    напряжение, отражать текущую емкость.

Самое главное, ПОДЧЕРКИВАЮ,
данного типа устройства позволяют работать индивидуально
с каждым аккумулятором.

По отзывам пользователей такое зарядное устройство
позволяет восстановить большинство запущенных
аккумуляторов, а исправные эксплуатировать весь
гарантированный срок эксплуатации.

К сожалению я таким зарядником не пользовался,
поскольку в провинции его купить просто невозможно, но в
форумах Вы можете найти много отзывов.

Главное не заряжайте на больших токах, не смотря на
заявленный режим с токами 0,7 — 1А, это все же
малогабаритное устройство и может рассеять мощность 2-5
Вт.

Заключение

Любое восстановление NiMh
аккумуляторов строго индивидуальная (с каждым отдельным
элементом) работа. С постоянным контролем и отбраковкой
элементов не принимающих зарядку.

И лучше всего заниматься их восстановлением с помощью
интеллектуальных зарядных устройств, которые позволяют
индивидуально выполнять отбраковку и цикл заряд — разряд
с каждым элементом. А поскольку таких устройств
автоматически работающих с аккумуляторами любой емкости
не существует, то они предназначены для элементов строго
определенной емкости или должны иметь управляемые токи
зарядки, разрядки!

И я бы не рекомендовал заниматься восстановлением
Li-ion аккумуляторов.
В критических ситуациях они склонны к разрушению с выделением большого количества энергии и
опасных химических компонентов!

Другие статьи на эту тему:

  1. Тестирование Ni-MH аккумуляторов АА
    форм-фактора.
    Автор данной статьи  Propretor.

  2. Секреты
    «омоложения» батареи ноутбука, Вадим Логинов, Журнал «Мир ПК», #05, 2006
    год.

А.Сорокин

2011 г.


<<назад>> <<
в начало>>
<<на главную
>>

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Зарядка аккумулятора никель металлгидридного

Процесс зарядки никель металлогидридных аккумуляторов связан с определенными химическими реакциями. Для их нормального протекания требуется часть энергии, которая подается зарядником, от сети.

КПД зарядного процесса представляет собой часть получаемой источником питания энергии, которая запасается. Величина этого показателя может разниться. Но при этом получить 100-процентное КПД невозможно.

Перед тем как заряжать металлогидридные аккумуляторы, изучают основные виды, которые зависят от величины тока.

Капельный тип зарядки

Применять этот вид зарядки для аккумуляторов необходимо осторожно, поскольку он приводит к уменьшению периода эксплуатации. Так как отключение зарядника этого типа осуществляется вручную, процесс нуждается в постоянном контроле, регулировании

В этом случае устанавливается минимальный показатель тока (0,1 от общей емкости).

Поскольку при такой зарядке ni mh аккумуляторов максимальное напряжение не устанавливается, ориентируются только на временной показатель. Для оценки временного промежутка используют параметры емкости, которые имеет разряженный источник питания.

КПД заряженного таким способом источника питания составляет около 65–70 процентов. Поэтому компании-изготовители не советуют пользоваться такими зарядниками, поскольку они влияют на эксплуатационные параметры аккумуляторной батареи.

Быстрая подзарядка

Определяя, каким током можно заряжать ni mh батарейки в быстром режиме, учитываются рекомендации производителей. Величина тока – от 0,75 до 1 от общей емкости. Превышать установленный интервал не рекомендуется, так как аварийные клапана включаются.

КПД быстрой зарядки ni mh источников питания достигает 90 процентов. Но этот параметр уменьшается, как только время зарядки заканчивается. Если своевременно не отключить зарядник, то внутри батарейки начнет увеличиваться давление, возрастет температурный показатель.

Дабы зарядить ni mh акб, выполняют такие действия:

Предварительная зарядка

Этот режим вводят в том случае, если батарейка полностью разряжена. На этом этапе ток составляет от 0,1 до 0,3 от емкости. Пользоваться большими токами запрещено. Временной промежуток – около получаса. Как только параметр напряжения достигает 0,8 вольт, то процесс прекращается.

Переход на ускоренный режим

Процесс наращивания тока осуществляется в течение 3–5 минут. В течение всего временного промежутка контролируется температура. Если этот параметр достигает критического значения, то зарядник отключается.

При быстрой зарядке никель металлогидридные батареек ток устанавливается на уровне 1 от общей емкости

При этом очень важно быстро отключить заряжающее устройство, дабы не нанести вред аккумулятору

Для контроля напряжения используют мультиметр или вольтметр. Это способствует исключению ложных срабатываний, которые пагубно влияют на работоспособность устройства.

Часть зарядных устройств для ni mh аккумуляторов работают не при постоянном, а при импульсном токе. Подача тока осуществляется с установленной периодичностью. Подача импульсного тока способствует равномерному распределению электролитического состава, активных веществ.

Дополнительная и поддерживающая зарядка

Для восполнения полного заряда ni mh аккумулятора на последнем этапе показатель тока снижается до 0,3 от емкости. Продолжительность – около 25–30 минут. Увеличивать этот временной промежуток запрещено, поскольку это способствует минимизации периода эксплуатации АКБ.

Ускоренная зарядка

Некоторые модели зарядных устройств для никель кадмиевых аккумуляторов оснащены режимом ускоренной зарядки. Для этого ток зарядки ограничивают, устанавливая параметры на уровне 9–10 от емкости. Снижать ток заряда нужно, как только батарея будет заряжена до 70 процентов.

Если аккумуляторная батарея заряжается в ускоренном режиме более получаса, то структура токопроводящих выводов постепенно разрушается. Специалисты рекомендуют пользоваться такой зарядкой, если вы обладаете определенным опытом.

Рекомендации по разрядке и зарядке АКБ

Как правильно заряжать источники питания, а также исключить вероятность перезарядки? Для этого следует соблюдать такие правила:

  1. Контроль температурного режима ni mh аккумуляторов. Прекращать зарядку nimh аккумуляторов необходимо, как только уровень температуры стремительно повышается.
  2. Для nimh источников питания установлены временные ограничения, которые позволяют контролировать процесс.
  3. Разряжать ni mh аккумуляторные батареи и заряжать их необходимо при напряжении, которое равно 0,98. Если этот параметр существенно снижается, то выполняется отключение зарядников.

Особенности использования

Существующие недостатки батареи сильно влияют на то, где желательно применение таких АКБ. Потребители должны быть оборудованы системой отсечки, которая при определённых уровнях подаваемого тока отключает аккумулятор. Ведь обычно, чтобы получить суммарный вольтаж, элементы питания соединены последовательно. Это приводит к тому, что при несогласованности объёма, если одна батарейка даёт меньше 1.1В, а вторая 1.6В, то есть суммарно потребитель получает 2.7В. И он продолжает потреблять энергию, из-за чего один из АКБ может выйти из строя. И дорога при этом батарее только на утилизацию. Рекомендуемые устройства:

  • Фотоаппараты с фотовспышками.
  • Рации.
  • Зарядные устройства для мобильных гаджетов.
  • Специализированные для использования с аккумулятором NiZn устройства.

В остальных случаях, при применении для питания: дистанционных управлений, фонариков или прочих приборах, необходимо периодически проверять вольтметром напряжение на контактах каждой из батарей.

Многие пользователи аккумуляторных источников питания такого типа отмечают лучшую работу приборов и устройств с ними. Все это происходит из-за того, что NiZn АКБ дают больше вольт, чем обычные NiCd или NiMh накопители.

Классификация по методу зарядки

Зарядное устройство заряжает АКБ, подключаясь как промежуточное звено к сети бытового электропитания.

Переменный ток в 220 В выпрямляется, его напряжение понижается, и некоторые другие характеристики так же модифицируются под «требования» автомобильного аккумулятора.

Но зарядные устройства для автомобильных аккумуляторных батарей в первую очередь различаются по способу зарядки.

Они классифицируются на аппараты:

  • постоянного тока;
  • постоянного напряжения;
  • аппараты, в которых реализован комбинированный метод.

Это означает, что устройство заряжает АКБ (аккумуляторную батарею) либо постоянным током, либо постоянным напряжением, либо может использовать любой из этих методов.

Каждый метод имеет свои функциональные особенности, плюсы и минусы.

Зарядка постоянным током

Это наиболее быстрый режим заряжания автомобильного аккумулятора. Используется постоянный ток, который должен быть равен 10% от емкости аккумулятора в амперчасах.

Если он будет ниже — аккумулятор будет заряжаться слишком долго или не зарядится вообще, если выше — АКБ может выйти из строя.

Автоматические зарядники постоянного тока устанавливают зарядный ток в зависимости от емкости АКБ самостоятельно, но на дешевых моделях, как правило, нет верньеров, позволяющих контролировать и регулировать ток.

Поэтому, если есть возможность, стоит приобрести зарядное устройство не только с функцией автоматической зарядки по току, но и с ручным регулятором, чтобы иметь возможность выставить ток зарядки самостоятельно.

Кроме того, за процессом зарядки нужно следить, т. к., несмотря на функцию автоматического отключения, которой снабжены почти все современные зарядники, превышение времени заряжания может привести к тому, что батарея «вскипит».

Зарядка постоянным током не очень хорошо сказывается на аккумуляторе, поэтому прибегать к этому методу часто не рекомендуется.

Важно: выбирая устройство зарядки при помощи постоянного тока, стоит присмотреться к тем, у которых есть режим десульфатации. Этот режим позволяет полностью восстанавливать емкость аккумулятора, долгое время (год и больше) стоявшего без дела

Зарядка постоянным напряжением

Метод постоянного напряжения — наиболее длительный, но и наиболее оптимальный для банок аккумулятора способ зарядить их. Здесь используется режим, в котором напряжение постоянно, но вот ток зарядки падает пропорционально оставшейся емкости аккумулятора.

Что это значит на практике? Допустим, полная емкость аккумулятора — 100% заряда. Зарядка идет постоянным напряжением 12-13 В.

При этом ток зарядки уменьшается по мере «наполнения» АКБ. Когда он заряжен на 99%, то ток уменьшается до 1% от исходного значения. Когда уровень заряда достигает 100%, ток падает до нуля.

Такой способ позволяет продлить срок службы АКБ, но сеанс «заправки» на несколько часов дольше, чем при методе заряжания постоянным током.

Поэтому такое устройство хуже подходит для экстренных ситуаций.

Комбинированный метод

Комбинированный метод предусматривает в работе «смену режимов». То есть зарядка идет вначале постоянным током, а потом, когда банки АКБ заряжены уже на 50-60%, аппарат автоматически переключает режим на зарядку постоянным напряжением.

Комбинированный способ дает возможность восстанавливать работоспособность аккумулятора быстро, но в ьто же время в щадящем режиме, что позволяет сохранить его ресурс работы.

Такой способ позволяет продлить срок службы старых аккумуляторов и не загубить раньше времени новые.

Все «комбинированные» зарядные устройства относятся к импульсному типу (что это такое — читайте ниже) и снабжены микропроцессорным блоком управления.

Особенности и применение Ni-cd батарей

По сравнению с металлогидридными батареями, Ni-cd имеют два главных недостатка.   Это меньшая ёмкость  и эффект памяти. Эффектом памяти называют “запоминание” батареей нижнего предела разряда. Той есть, если такую батарею разрядить не полностью, длительность работы в следующем цикле будет меньше на эту самую величину от полного разряда до того предела, который “запомнил” аккумулятор. Чтобы “сбросить” память , нужно два-три раза полностью зарядить-разрядить такую батарею.

Казалось бы, при таких свойствах, этот тип батарей должен уйти в небытие. Но этого не происходит. Благодаря двум другим свойствам этого типа батарей – высокая токоотдача и способность хорошо работать при отрицательных температурах.

Приблизительно 90% Ni-cd на сегодняшний день, это аккумуляторные сборки для электроинструмента, детских игрушек, электробритв, автономных пылесосов, медицинского оборудования и т.д. Применение в бытовом сегменте (вместо обычных первичных батареек) практически сведено к нулю.

Некоторые страны законодательно ограничивают использование Ni-cd элементов в связи с токсичностью кадмия. В новых устройствах их место занимают литий-ионные аккумуляторы с большой токоотдачей.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Достоинства и недостатки

Основные преимущества металлгидридных аккумуляторов:

  • повышенная энергетическая емкость;
  • отсутствие вредных элементов, таких как кадмий;
  • практически полное отсутствие «эффекта памяти»;
  • для уменьшения разрядного напряжения необходимо снижать уровень собственного напряжения до 1 В.

Основные недостатки никель металлгидридных аккумуляторов:

  • функционирование в узком диапазоне значений тока нагрузки;
  • в ходе эксплуатации необходимо использовать температурные реле и датчики;
  • опасность повреждения элементов при ошибке соединения в батарее;
  • повышенные показания самостоятельного разряда, в отличие от никель кадмиевых;
  • необходимость применения дорогих легирующих металлов в производстве электродов, чтобы повысить температурный диапазон;
  • полная потеря емкости при разряде аккумулятора до нулевого значения.

При выборе того или иного источника питания для различной электротехники необходимо обратить внимание на основные параметры и характеристики. Правильная эксплуатация и контроль заряда значительно продлит срок службы аккумуляторной батареи, а также снизит затраты на его восстановление

Где используются

Основные сферы применения Ni-Cd — оборудование, имеющее повышенные разрядные токи. Такой электротехнике NiCd накопители могут обеспечить стабильную мощность. Также они не перегреваются в процессе работы при максимальном токе.

Ni-Cd обслуживают разнообразный транспорт: троллейбусы, небольшие водные средства передвижения, электрокары.

До выхода на рынок литиевых источников энергии, кадмиевые АКБ широко использовались для обслуживания переносного инструмента, а также, в плоском исполнении внедрялись в ПК для питания независимой памяти. Нашёл своё место NiCd и в фотоаппаратах, фонариках, калькуляторах, устройствах для улучшения слуха.

Никель-кадмий способен длительное время храниться в разряженном состоянии и он не подвержен пагубному влиянию отрицательных температур. Низкое внутреннее сопротивление и низкая удельная масса, делают никель-кадмий весьма подходящим вариантом для питания бортовой сети летательных аппаратов и для обслуживания переносных радиостанций.

Сейчас, по причине ужесточения экологических требований большинство электробатарей популярных типоразмеров, таких как AA, AAA и других, производятся по Li-Ion и Ni-Mh технологиям. Но в то же время, довольно большое количество никель-кадмиевых АКБ различных типоразмеров выпущенных несколько лет назад, благополучно эксплуатируются и по сей день. Естественно, сейчас их также можно приобрести, причём, за довольно привлекательную сумму.

Основные преимущества и недостатки

Аккумуляторы с никелем и кадмием имеют различные формы. Самыми распространенными являются цилиндрические батареи. Чуть меньше распространены плоские батарейки в виде таблеток для часов.

Эти АКБ имеют следующие преимущества:

У Ni-Cd АКБ достаточно прочный металлический корпус. Он способен как выдержать внешнее физическое воздействие, так и противостоять внутренним химическим реакциям.
Такие аккумуляторные батареи способны пережить замораживание до -40°С.
Такие батареи считаются пожаробезопасными

В отличие от своих литий-ионных собратьев они не воспламеняются во время зарядки, эксплуатации и хранения.
Еще одно важное преимущество — невысокая стоимость. Низкая цена делает эти аккумуляторы очень привлекательными.
Независимо от формы зарядные элементы этого типа имеют небольшую емкость в сравнении Ni-MH батареями, разработанными значительно позже

Но меньшая емкость — не повод отказываться от кадмиевых аккумуляторов. Дело в том, что при использовании они нагреваются существенно медленнее, чем никель-металл-гидридные батареи.

Медленное нагревание объясняется эндотермическим характером реакций, протекающих внутри аккумуляторной батареи. Тепловая энергия поглощается самим аккумулятором. В никель-металл-гидридных АКБ тепло, напротив, выделяется наружу. Выделение тепла настолько существенное, что если вовремя не прекратить использовать МН аккумуляторов, то они могут выйти из строя.

Эти батареи имеют следующие недостатки:

  • Невысокая энергетическая емкость в сравнении с другими типами АКБ.
  • Эффект памяти. При неполном разряде с последующей зарядкой емкость аккумулятора постепенно уменьшается.
  • Материалы, применяемые при изготовлении этих аккумуляторов, считаются токсичными. Из-за этого в некоторых странах их запретили.
  • Достаточно высокий саморазряд. После длительного хранения нужно полностью зарядить аккумулятор.

Несмотря на эти недостатки, такие АКБ сегодня широко применяются в авиационной промышленности, военной технике и устройствах, обеспечивающих мобильную связь. В форме таблеток они востребованы в компьютерах и электронных часах.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

  • Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.

  • Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .

  • Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.

В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: