Водородные топливные элементы

Вторая попытка

BMPower, которая как раз пытается предложить рынку не «сырой» экземпляр топливной системы, решила фокусироваться на индустриальных и военных дронах.

По оценкам компании, в мире эксплуатируется порядка полутора тысяч индустриальных дронов, а в ближайшие пять лет рынок будет ежегодно прирастать на шесть тысяч бортов.

Топливные элементы компания делает на подмосковном предприятии, причем, как говорит Алексей Иваненко, у BMPower есть ключевая технология изготовления мембран электродного блока. «Мы делаем весь цикл: от порошка до готовой системы в корпусе», — утверждает он. В цеху установлено оборудование для изготовления катализаторов, нанесения мембран, лазерной резки. В BMPower стараются больше использовать российские компоненты. Если еще год назад почти все было импортным, то сегодня катализаторы, например, делаются уже в России. Но электроника остается полностью импортной. «Мы сами сконструировали систему управления, но компоненты у нее импортные, — говорит Иваненко. — Однако мы работаем с “Алмаз-Антеем” — передаем им интеллектуальную собственность на систему управления, а они адаптируют ее к российской компонентной базе уже без нашего участия».

Хотя сам принцип использования химической реакции водорода для получения энергии известен как минимум сотню лет, все разработчики топливных систем на основе водорода идут своим путем, чтобы сделать их использование наиболее удобным. Исследования ведутся в области разработки оптимальных составов, создания новых катализаторов и технологий модификации мембраны с целью повысить энергоемкость и эффективность работы всей системы, а также снизить ее себестоимость.

В мире такие продукты для дронов и роботов делают как минимум шесть компаний, среди которых Protonex, Intellegent Energy, Horizon. Купить их топливные элементы можно и на российском рынке через дистрибуторов. По словам Иваненко, системы BMPower импортным не уступают, а в чем-то и выигрывают. К примеру, только они позволяют дронам летать в тридцати-сорокаградусные морозы.

Но все не так просто, как и на любом новом рынке.

Топливные элементы — это не батареи, а электро-химические устройства. Они не накапливают, а вырабатывают энергию, и не через сжигание топлива, а путем химической реакции — в данном случае реакции водорода и кислорода, протекающей в мембранно-электродном блоке, который входит в состав топливного элемента. Молекулы водорода и кислорода взаимодействуют, а на выходе получается вода в виде жидкости или пара

Факторы, сдерживающие внедрение водородных технологий

  • отсутствие водородной инфраструктуры (частично эту проблему можно разрешить в частности устройством домашних заправок при частных жилых домах).
  • несовершенные технологии хранения водорода (см. статью Хранение водорода);
  • отсутствие стандартов безопасности, хранения, транспортировки, применения и т. д.;
  • распространённые современные способы безопасного хранения водорода требуют большего объёма топливных баков, чем для бензина. Поэтому в разработанных на сегодняшний день автомобилях замена топлива на водород приводит к значительному уменьшению объёма багажника. Возможно в будущем эта проблема будет преодолена, но скорее всего за счёт некоторого увеличения габаритов легковых авто. (Для других классов автомобилей (автобусов, грузовых автомобилей, разнообразных специальных автомашин) проблема увеличения габаритов транспортного средства не столь остра. В частности на автобусах топливные элементы могут размещаться на крыше кузова, подобно тому как это делается например с троллейбусным электрооборудованием.)

Почему мы до сих пор не используем водородные двигатели?

В автомобилях внедрение альтернативных источников энергии безуспешно идет уже многие десятилетия. Но увы, топливо, изготовленное из «черного золота», уже больше века не желает уступать позиции: на сегодняшний день оно не имеет сильных конкурентов.

Одним из таких конкурентов вполне мог бы стать двигатель, использующий водород. Идея такого двигателя не нова: даже в блокадном Ленинграде работало несколько сотен машин на водороде, так как получить его было гораздо проще, чем традиционное топливо.

Причина, по которой человечество хочет «соскочить» с нефтяной зависимости, очевидна. Во-первых, это сильное загрязнение атмосферы, приводящее к парниковому эффекту (доля автомобилей в этом загрязнении оценивается в 25%). Во-вторых, это постоянно повышающаяся в долгосрочной перспективе стоимость самого топлива. В-третьих, бензиновые двигатели внутреннего сгорания имеют достаточно низкий КПД – около 35%, а вся остальная энергия уходит в тепло. Ну и, конечно, не стоит забывать о том, что нефть рано или поздно закончится.

Современные двигатели внутреннего сгорания могут работать на водороде. Правда, его мощность несколько снизиться; чтобы этого избежать, необходимо внести некоторые изменения в систему зажигания. Но по большому счету, традиционные ДВС не очень хорошо адаптированы к работе на водороде, и гораздо более привлекательной технологией выглядят водородные топливные элементы.

Топливный элемент – это, по сути, батарейка, вырабатывающая электричество, но в отличии от нее, вещество, необходимое для реакции (в данном случае водород), не находится внутри элемента, а подается извне. Энергия получается не в результате малоэффективного процесса горения, а посредством «холодной» химической реакции, например, с кислородом через протонообменную мембрану. КПД топливных элементов достигает очень высоких значений – до 80%, причем это значение практически не зависит от нагрузки. К преимуществам водородных топливных элементов также относится маленький вес и размеры.

Сегодня практически у всех автопроизводителей есть работающие прототипы машин, использующих жидкое водородное топливо. К сожалению, дальше концептов пока дело не идет, и этому есть свои объяснения.

  • Практически полностью отсутствует инфраструктура водородных заправок, каждая из которых обходится примерно в 10 раз дороже традиционной (из-за дорогого оборудования).
  • Повышенная опасность хранения водорода, связанная с его повышенной летучестью и легкостью воспламенения.
  • Самая высокая из всех веществ летучесть водорода приводит к трудности его хранения: пары жидкого водорода проникают через мельчайшие зазоры. Так, специальный автомобильный бак, наполненный жидким водородом, за десять дней из-за испарения теряет половину объема.
  • Стоимость водородного топлива в несколько раз выше стоимости бензина и соляры, и требует значительного количества электроэнергии для его производства.

Последняя причина, пожалуй, является основным сдерживающим фактором на пути развития водородных двигателей в массовом сегменте.

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

  • Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
  • Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
  • Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
  • «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
  • Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
  • Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
  • Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
  • БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
  • В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
  • Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
  • Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
  • Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
  • Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
  • Дизайнерский дом Pininfarina создал машину на водородном топливе H2 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Молекулярный водород диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Основные достоинства и недостатки двигателей внутреннего сгорания на водороде

Как было сказано выше, масса автомобилей, использующих водород в качестве топлива для двигателя внутреннего сгорания значительно ниже, чем у конкурентов. А вот полезный объем багажных отделений, несмотря на необходимость установки топливных баков для водородного топлива — больше. В конечном итоге масса и объем двигателя внутреннего сгорания, дополнительного бака для водорода, традиционной трансмиссии и топливной системы меньше, чем масса и габариты электродвигателя, мощных аккумуляторов, преобразователей тока, редукторов.

Серьезным преимуществом является и возможность использования в качестве топлива не только водорода, но и традиционных видов топлива. Правда за это приходится расплачиваться необходимостью иметь два топливных бака. Однако внедрять такую технологию в «массы» будет проще — это факт.

Из негатива — низкая взрыво- и пожароопасность.

Нерешенным является и вопрос о баках для водорода. Инженеры изобрели несколько способов хранения водорода — металл-гидридные аккумуляторы, баки для хранения под высоким давлением или в сжиженном виде. У каждого из способов есть преимущества и недостатки, однако технологии не стоят на месте, и рано или поздно приемлемый вариант будет найдется.

Какой из двух вариантов, водородные топливные элементы или двигатели внутреннего сгорания, работающие на водороде или водородно-бензиновой смеси, окажется экономически и технически наиболее перспективным пока не ясно: исследования в данной области продолжаются…

Преимущества водородных топливных ячеек

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины — порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента — он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью — электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку — заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

Принцип работы

Устройство водородных двигателей не отличается особой сложностью. Главным отличием является способ подачи и воспламенения смесей при полном сохранении основного принципа преобразования. При этом на фоне традиционного бензина и дизеля, водородное топливо обеспечивает мгновенную скорость реакции даже в условиях незначительного уровня давления внутри топливной системы. Для образования смеси участие воздуха не является необходимым, а остающийся в камере сгорания пар, после прохождения сквозь радиатор и конденсации, снова становится Н2О.

Безусловно, топливный элемент в данном варианте предполагает использование специального электролизера, обеспечивающего выделение достаточного количества водорода для участия в возобновлённом гидролизе с кислородом. Основная проблема состоит в том, что в современных реалиях данный вариант практически невыполним. Современные технологии не гарантируют стабильность функционирования и беспроблемный запуск мотора при отсутствии атмосферного воздуха.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории — высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Jedi-Sezu › Блог › Прошлое «будущего»: водород в автомобилях

На прошлой неделе внимание мировой общественности привлекло объявление автопроизводителя Toyota о старте продаж нового автомобиля Toyota Mirai с водородным двигателем. Mirai в переводе с языка автопроизводителя означает «будущее», и некоторые СМИ поспешно окрестили Mirai «революцией» на автомобильном рынке

Покопавшись в истории, я поняла, что сенсацию Mirai может произвести лишь только потому, что японцы вопреки всем но все же решились массово производить и продавать автомобиль, работающий на водороде. В остальном — история топлива H2 длится уже не первый век, и автомобили с водородными двигателями — далеко не новость.

Начну, пожалуй, с того, что сама идея использовать водород для приведения в движение автомобиль родилась уже в 19-м веке, а точнее в 1807 году, когда швейцарец Франсуа Исаак де Риваз придумал двигатель внутреннего сгорания, работающий на H2. Полвека спустя француз Этьен Ленуар изобрел «гипомобиль» с одноцилиндровым двухтактным двигателем, топливом для которого был полученный с помощью электролиза водород. Позже, правда, Ленуар адаптировал двигатель под различные виды газов, в том числе угольный, и порядка 400 его автомобилей разошлись по своим покупателям.

Что-то более-менее похожее на «нормальный» автомобиль с двигателем на водородных топливных элементах было представлено в 1933 году энергопредприятием Norsk Hydro. Один из своих грузовиков компания перевела на газообразный водород, подача которого в двигатель внутреннего сгорания осуществлялась через встроенный трансформатор аммиака. Стоит упомянуть и еще об одном грузовике с водородным двигателем, который стал доказательством того, что война все-таки двигатель прогресса. Топливо в блокадном Ленинграде было дефицитным, и тогда военный техник Борис Шелищ предложил использовать воздушно-водородную смесь приземлившихся аэростатов и подавать ее «во всасывающие трубы автомобильных двигателей». После ряда экспериментов и доработок за 10 дней на водородное топливо было переведено 200 грузовиков ГАЗ-АА, Шелища наградили орденом Красной Звезды, а на изобретение был выдан авторский патент… который мог бы обеспечить лидерство России в разработке транспортных средств на водородном топливе, если бы про него не забыли.

Важной вехой в истории автомобилей на водородном топливе стал 1966 год, когда была представлена модель «Электровэн» 1966 от General Motors. Этот автомобиль считается первым непосредственно выпущенным с двигателем на водородных топливных элементах

Машина крайна интересная: спереди это просто автомобиль для водителя и одного пассажира, а сзади — целая научная лаборатория: один большой бак для водорода, один для кислорода и в общей сложности около 170 метров труб.

В 1966 году «Электровэн» выпустили, протестировали, показали журналистам, но на том проект застопорили по причинам, которые, собственно, и сегодня препятствуют развитию автомобилей на водороде — высокая стоимость материалов (платины) и отсутствие инфраструктуры.

В 1970-80-х годах исследования и разработки в области создания тепловых двигателей на водороде успешно продолжались по всему миру. В это время свои первые достижения представила и Япония. Это были автомобили Musashi, разработанные одноименным японским технологическим институтом. Musashi, начиная с 1974 года, последовательно выпускали легковые автомобили, приводимые в движение сжиженным водородом, а в 1986 году показали еще и грузовичок.

Исследования по применению водорода в двигателях авто продолжались и в СССР. В 1979 году лабораторно-дорожные испытания прошел РАФ-22031 с комбинированной (бензоводородной) силовой установкой. Но видимо по причинам политического хаоса разработкам не суждено было выйти из разряда экспериментальных.

В 1980-90-х годах в «тему водородного топлива» включились уже многие игроки международного автомобильного рынка, в том числе и Daimler — Mercedes Benz, Mazda, Renault, Toyota, BMW, ну а в 2000-х эта тенденция стала повальной.

Toyota «будущее» Mirai появится на рынке Японии уже 15 декабря этого года. По завявлениям производителя, автомобиль способен преодолевать 650 км. на полном баке, заправить который можно будет за несколько минут. Стоимость автомобиля в Японии составит 57 тысяч USD. Говорящее название Mirai, вполне вероятно, покажет, есть ли будущее у водорода как альтернативного топлива для автомобилей.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina H2 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector