Восстановление изношенных деталей сельхозтехники

Восстановление и склеивание деталей с использованием пластмасс

Для восстановления изношенных деталей при ремонте металлорежущих станков применяют пластмассы. В качестве клея пластмассы широко используются для склеивания поломанных деталей, а также для получения неподвижного соединения деталей, изготовленных из металлических и неметаллических материалов. При ремонте металлорежущих станков наибольшее распространение получили такие пластмассы, как текстолит, древеснослоистые пластики и быстро твердеющая пластмасса— стиракрил. Текстолит и древеснослоистые пластики применяются для восстановления изношенных поверхностей направляющих станков, изготовления зубчатых колес, подшипников скольжения, втулок и других деталей с трущимися рабочими поверхностями.

Одним из эффективных способов получения неподвижных соединений является склеивание деталей. По сравнению с клепкой, сваркой и сбалчиванием клеевые соединения имеют такие преимущества, как соединение материалов в любом сочетании, уменьшение веса изделий, герметичность клеевых швов, антикоррозионную стойкость и во многих случаях снижение стоимости ремонта изделия. В практике ремонта металлорежущих станков широко используется карбинольный клей и клей типа БФ. Детали, склеенные карбинольным клеем с наполнителем из непористого материала, устойчивы против действия воды, кислот, щелочей, спирта, ацетона и подобных растворителей. Различные марки клея БФ отличаются содержанием компонентов и назначением.

Процесс восстановления деталей склеиванием состоит из трех этапов: подготовки поверхности, склеивания и обработки швов. Поверхности деталей, подлежащих склеиванию, очищаются от масла, загрязнений и хорошо пригоняются. Клей наносят кистью или стеклянной палочкой. Жидкий клей наносят на обе соединяемые поверхности.

Для склеивания деталей, работающих при температуре 60—80° С, применяют клей БФ-2. Для склеивания деталей, работающих в щелочной среде, — клей БФ-4. Клеем БФ-6 приклеивают ткани и резину к металлу.

Клей БФ наносят на склеиваемые поверхности в два слоя с перерывом примерно в 1 ч 15 мин. Соединяемые детали принимают одну к другой (1 — 15 кГ/см2) и выдерживают под прессом.

Выдержка склеенных деталей под прессом

Марка клея БФ-2 БФ-4 БФ-6
Температура, °С 120—200 60—90 150—200
Длительность выдержки, ч 1—3 3—4 0,25—1

Чтобы разобрать склеенные детали, их необходимо нагреть до 200° С и выше.

Особенности слесарно-механических способов восстановления деталей

Начнем с них, потому что именно они используются в подавляющем большинстве ситуаций, даже после других методов – для доводки. Хотя наиболее распространенные объекты их применения – плоскости: направляющих, клиньев, планок.

С их помощью также ремонтируют винты, валы, оси и тому подобные элементы, причем начиная с центровых отверстий. Если царапины, потертости, овальность и другие риски незначительны (до 0,02 мм), поверхности подвергаются шлифовке, если же деформации более глубокие и серьезные, требуется провести наращивание с последующим обтачиванием и выравниванием до ближайших по значению стандартных параметров.

Ключевая особенность – правильный выбор базы: в этом случае основная установочная уже не подойдет, поэтому следует ориентироваться именно на вспомогательную.

Если износ значительный, в ходе механического способа восстановления деталей зачастую используют промежуточные компенсаторы, которые могут быть:

  • подвижные – устраняющие образованный зазор посредством своего перемещения и, таким образом, делающие ремонт необязательной мерой;
  • сменные – актуальные тогда, когда люфт уже слишком велик, чтобы его могло нивелировать простое перекрытие комплектующими.

Несколько типовых случаев использования данных элементов:

  • посадка на клей (или напрессовка) втулки на цилиндрическую наружную поверхность направляющей оси;
  • установка полувтулки на изношенную шейку коленчатого вала;
  • использование ввертыша для отверстия с расточенной резьбой;
  • компенсация истирания плоскостей при помощи привинченной планки.

Скрепление обычно происходит с одним из элементов сопряжения.

Отдельную группу представляют собой дефекты, появляющиеся и развивающиеся вследствие накопления внутренних напряжений, действия чрезмерных усилий или возникновения трещин и пробоин, больших царапин и задиров, участков выкрашивания. В этих случаях можно выполнить заливку или запайку, поставить штифт или заплатку – в зависимости от материала и характера повреждения.

Для каких целей применяют правку металла

Конфигурация детали может быть нарушена в ходе ее первичной обработки, транспортировки или хранения. Такие заготовки непригодны для дальнейшего использования, но не являются невозвратным, окончательным браком. Правку металла используют с целью возвращения заготовке формы, определенной конструкторско-технологической документацией.

Правка металла с целью возвращения заготовке формы

Иногда с целью снижения себестоимости продукции предприятие намеренно приобретает заготовки ненадлежащей формы, в этом случае операция включается в технологический процесс. Плановая правка металла может также быть включена в техпроцесс после операций по термической обработке, вызывающих изменение формы детали. В противном случае работа будет внеплановой, и стоимость ее входит в незапланированные убытки.

Инструменты, применяемые при рубке металла

Основное режущее лезвие находится внутри зубила. Оно выглядит так – деревянная ручка небольшой длины, широкое основание и сама заостренная кромка. иногда дерева нет вовсе или его заменяет прочный пластик, резина. Главное, чтобы по шляпке можно было бить молотком, то есть была широкая часть. Посмотрим на фото:

Имеет большое значение твердость клинка. Обычно применяют инструментальную сталь марок У7 или У8, а прочность не должна быть меньше, чем 53 HRC.

Теперь поговорим о заточке. Не всегда чем острее, тем лучше. Ведь при соприкосновении с достойной преградой, кончик просто может сломаться. Посмотрим на таблицу и определим угол, под каким нужно заточить зубило, в соответствии с обрабатываемым материалом:

Металл Угол заточки, градусы
Сталь 60
Чугун и сплавы на его основе 70
Цветмет 35-45

Теперь о головке. В идеале она должна быть более мягкой, чем основание, именно поэтому старые образцы инструмента не очень хорошо подходят. Это обусловлено тем, что при ударе могут начать деформироваться, крошиться кромки. Тогда необходимо своевременно менять ручку. Если пользоваться неисправным зубилом, то можно попасть себе по пальцу.

Технология горячей гибки деталей из листового металла

Практически все листовые черные и цветные металлы можно сгибать в холодном состоянии. Исключение составляют такие материалы, как дюралюминий и качественная сталь. Их очень сложно деформировать «на холодную», поэтому предварительно данные виды листового металла нагревают.

Так, для повышения пластичности стали до нужного уровня следует нагреть ее до красного каления (если не используются ударные нагрузки). В случае применения ковки материала его обрабатывают на этапе белого каления. Стадии красного и желтого каления приводят к повышению хрупкости, поэтому под ударами молотка он может разрушиться. Технология обработки цветных металлов и сплавов подразумевает гибку деталей в несколько приемов. Между этапами обрабатываемый материал необходимо подвергать отпуску.

Отпуск является способом термической обработки, когда после нагрева закаленной детали до небольшой температуры ее подвергают охлаждению с помощью воздуха или воды. Оценить температуру разогреваемой заготовки во время отпуска можно по цвету. Оксидные пленки, возникающие на поверхности во время разогрева, могут быть таких цветов, как:

  • светло-желтый (соломенный) – соответствует температуре +220 °С;
  • темно-желтый – температуре +240 °С;
  • коричнево-желтый – температуре +255 °С;
  • коричнево-красный – температуре +265 °С;
  • пурпурно-красный – температуре +275 °С;
  • фиолетовый – температуре +285 °С;
  • васильковый – температуре +295 °С;
  • светло-синий – температуре +315 °С;
  • серый – температуре +330 °С.

Чтобы проще было выполнять механическую обработку листового материала, его подвергают отжигу. Отжиг представляет собой термическую операцию, направленную на снижение твердости материала. Для ее выполнения заготовку нагревают до определенной температуры, затем выдерживают при ней до тех пор, пока материал не прогреется по всему объему. Далее следует медленное охлаждение до комнатной температуры. Данная операция выполняется для цветных и черных металлов, значительно снижая их жесткость, что позволяет легко гнуть их «на холодную».

Где применяется гибка листового металла

Гибка рубка металла не является процессом, который характерен исключительно для крупных предприятий. Подобный технологический процесс вполне возможно воплотить в небольшом цеху. Так, можно выполнять большой ассортимент продукции, которая требует применения гибки тонколистового металла — деталей для водосточных систем, каркасов металлоконструкций, уголков и направляющих для корпусной мебели, а также аксессуаров для сборных систем. выполняет резку и гибку листового металла Москва на современных гидравлических прессах. На подобном оборудовании можно изготавливать большое количество видов заготовок. Пресс предназначен для гибки изделий из листового металла с гидравлическим усилием около 100 тонн.

Бренды и модели

На рынке производства и продажи оборудования для правки присутствуют российские и иностранные предприятия. Среди зарубежных компаний особенно выделяются Roundo (Швеция), MG SP (Италия), Kohler (Германия), российский предлагает широкий выбор правильно-отрезных и гидравлических прессов.

Большой популярностью пользуются следующие модели:

  • правильно-отрезной станок бренда «Промтехоснастка» модель «GT 4-14»;
  • правильно-отрезной автомат бренда «Антарес» модель «ВПК ПРО-14 КОМПАКТ»;
  • правильно-отрезной станок бренда «GROST» модель «SCM6-12C»;
  • вертикальные гидравлические прессы П6330 и П6324 от ;
  • листоправильные вальцы Kohler Peak Performer GC.

Экология СПРАВОЧНИК

Металлизацией называется процесс нанесения на поверхность детали расплавленного и распыленного металла (рис. 17.5). Металл в виде проволоки расплавляется в специальных аппаратах-металлизаторах. Металли-зационные аппараты по способу получения тепловой энергии для нагрева распыляемого материала подразделяются на электродуговые, газовые, высокочастотные и плазменные.

Расплавленный металл распыляется струёй сжатого воздуха 0,5-0,6 МПа, выходящего из металлизатора, и мельчайшие частицы распыленного металла со скоростью 80- 200 м/с наносятся на поверхность детали. Толщина наносимого слоя колеблется от 0,3 до 10 мм.

Соединение распыленных частиц между собой и с поверхностью деталей происходит за счет механических и частично молекулярных связей. Для хорошего сцепления частиц с деталью поверхность под металлизацию тщательно подготавливают: очищают от влаги, окислов, придают шероховатость путем пескоструйной обработки, обдувки металлической крошкой, нарезания «рваной» резьбы и обезжиривают. Между подготовкой детали и металлизацией допускается разрыв не более 1,5-2 ч.

Поверхности деталей, не подлежащих металлизации, изолируют картоном, пергаментной бумагой, специальной пастой; отверстия, шпоночные канавки, пазы закрывают деревянными или резиновыми пробками. Воздух, необходимый для распыления металла, очищается от влаги и масла в специальных масловлагоотделителях.

Цилиндрические детали при металлизации устанавливают в патроне или центрах токарного станка, а металлизатор — на суппорте станка. Металлизация плоских деталей производится на столе, металлизатор при этом находится в руке рабочего.

Металлизационный слой обладает достаточно высокой износостойкостью при жидкостном и полужидкостном трении, но невысокой прочностью сцепления покрытия с напыляемой поверхностью. Поэтому металлизацией нельзя восстанавливать детали, работающие при больших удельных давлениях на сдвиг и сжатие (зубья шестерен, кулачки распредвалов и т. п.).

Электродуговая металлизация производится аппаратами, в которых плавление проволок осуществляется электрической дугой. Для электродуговой металлизации применяют аппараты ЭМ-3 А, ЭМ-9, ЭМ-10, ЭМ-12-67 (ручные) и ЭМ-6, ЭМ-12 и МЭС-1 (станочные), (рис. 17.5).

Г а з о в а я металлизация производится аппаратами ГИМ-2М, МГИ-1-57, МГИ-2-65 и др., в которых проволока плавится ацетилено-кислород-ным пламенем (рис. 17.6, а).

Высокочастотная металлизация основана на плавлении проволоки токами высокой частоты (рис. 17.6, б). В высокочастотном аппарате проволока специальным механизмом подается непрерывно в направлении конусного отверстия концентратора вихревых токов. Попадая в отверстие, проволока плавится и распыляется сжатым воздухом. Процесс ведется металлизаторами МВЧ-1, МВЧ-2 и МВЧ-3.

Установки для плазменной металлизации выпускаются под марками УПУ-3, УПУ-ЗМ, УМП-4-64, УМП-5-68. Они работают при напряжении от 40 до 65 В, при силе тока 200-400 А, скорость потока плазмы достигает 90 м/с. Производительность металлизаторов находится в пределах 2,5- 12 кг/ч.

Рисунки к данной главе:

Схема устройства распылительных головок металлязатора

Рубка

Удаление поврежденных элементов кузова вырубкой выполняют вручную с помощью зубила или пневматических резаков с набором специальных насадок.

Режущая кромка зубила должна быть прямолинейной и заточенной под углом 60″. Вырубаемые детали укладывают на металлическую массивную незакаленную опору. Рубку осуществляют путем нанесения ударов по головке зубила молотком, перемещая режущую кромку в направлении вырубаемой части. При каждом перемещении зубила режущую кромку сдвигают на 1/4 ее длины по линии предыдущего реза. После правки киянкой линию реза обрабатывают напильником или шлифовальным кругом. Зубило используют для прямолинейной рубки деталей из тонких листов, для обрезания фасок на толстых металлических листах, при отсутствии шлифовальной машинки, а также для рубки металлических прутков и т. п.

Механическую вырубку производят пневматическими пистолетами, оснащенными набором специальных насадок. Пистолет удерживают за рукоятку, в которую вмонтирована кнопка управления клапаном подачи сжатого воздуха. Воздух подается к золотнику, установленному в крайней части корпуса пистолета. В цилиндрической полости корпуса помещен плавающий поршень. Под давлением сжатого воздуха поршень перемещается в направлении зубила и ударяет по его торцу. Зубило возвращается в исходное положение под действием пружины, установленной на корпусе пистолета. Отработанный после каждого хода воздух стравливается через боковое отверстие в корпусе. Возврат поршня в рабочее положение осуществляется либо в результате обратного удара зубила по поршню и воздействия пружины, либо подачей сжатого воздуха в противоположную часть цилиндрической полости, разделенной поршнем. Зубило имеет специальную конструкцию, обеспечивающую его надежное закрепление в пистолете. Рабочая часть зубила имеет форму тонкого лезвия.

Детали, подвергаемые механической рубке, на наковальни не устанавливают. Поверхность реза обычно располагают на весу. Рубку листа осуществляют зубилом, установленным под углом к обрабатываемой поверхности. При рубке зубило прижимают к вырезаемой детали. Буртик зубила при установке в пистолет устанавливают с зазором между корпусом и пружиной.

Механическую рубку широко используют для удаления поврежденных участков кузовов, срезания точек сварки, гаек, крепежных хомутов и т. п.

Характеристика восстановления деталей пластической деформацией

Деформирование применяется как для изменения формы и геометрических размеров детали, так и для улучшения эксплуатационных характеристик поверхности изделия (показатель твердости и износостойкости).

С изменением формы все понятно: при прикладывании к твердому телу значительной по величине нагрузки и последующем снятии ее, остается остаточная деформация. Данный способ восстановления деталей машин применяется на практике при необходимости выровнять изделия, которые получили повреждения в результате столкновения. К данному виду работ можно отнести как кузовные работы на автомобиле, попавшем в аварию, так и рихтование толстого стального листа. Часто необходимость проведения обработки давлением возникает после обработки сваркой: при нанесении шва определенные локальные зоны сильно нагреваются, что приводит к линейному расширению определенных элементов сварной конструкции. При остывании происходит обратный процесс – уменьшение в размерах, что приводит к короблению и нарушению геометрии всего изделия. Поэтому при наличии строгих требований по форме и отклонениям конструкции она подвергается обработке давлением с целью исправить дефект.

Также обработка давлением может применяться с целью упрочения поверхностей восстанавливаемого изделия, например, после наплавки или же после механического снятия резанием определенного припуска с детали. Упрочнение деформацией – довольно редкий способ восстановления деталей. Выбор в пользу данной методики осуществляется крайне редко. Это обусловлено тем, что для упрочнения поверхностной пластической деформацией необходимо довольно дорогостоящее оборудование. Приобретать такие станки для того, чтобы изредка ими пользоваться в случае возникновения необходимости в восстановлении, экономически нецелесообразно.

Что называется ручной рубкой металла

Процесс может быть как горизонтальным, так и вертикальным, в зависимости от возможности присоединения образца. Сперва он зажимается тисками, если толщина позволяет. В обратном случае кладется на специальный стол (заранее подумайте о его прочности). Чтобы снизить возможность скольжения можно подстелить прорезиненные накладки, а еще лучше – вкрутить по краям со всех сторон саморезы.

Затем подготавливаются инструменты. О них мы расскажем ниже подробнее, а сейчас только озвучим список необходимого – крейцмейсель или зубило, молотки.

Далее подумайте об ударе. Конечно, они различаются по силе. Но не всегда самое тяжелое воздействие – выгодна. Сперва нужно сделать достаточную зазубрину на месте для того, чтобы лезвие не съехало. Если с первого же раза колотить во всю мощь, можно добиться только деформированной поверхности и испорченного инструментария. Однако затем от этого зависит скорость и чистота среза.

Удары могут быть трех видов:

  • кистевой;
  • локтевой;
  • плечевой.

В соответствии с тем, где начинается замах. Они представлены в порядке увеличения силы. Также этот параметр становится больше от длины ручки молотка и его массы.

К особенностям ручной процедуры можно отнести:

  • небольшую производительность;
  • большой расход рабочего ресурса и времени;
  • невысокую точность;
  • плохой, с обязательной дальнейшей обработкой сруб.

Однако этот вариант является выигрышным для мелкосерийных производств и единичных изделий, а также в домашних условиях и при отсутствии специализированных станков.

Перспективные методы восстановления

К перспективным способам можно отнести такой оригинальный способ восстановления, который, правда, ещё применяют ограниченно, как детонационное напыление. Разработчики постарались использовать энергию детонации, имеющуюся в некоторых газах. На восстанавливаемую поверхность наносится металлический или металлизированный порошок, состоящий из смеси карбидов вольфрама и титана. При взрыве ацетиленокислородной смеси, продолжительностью 0,23 сек., на ремонтной поверхности образуется покрытие толщиной 0,007 мм. Покрытие из порошков с элементами вольфрама и титана имеет большую твёрдость и очень высокую износостойкость. Метод предполагает возможность нанесения многослойного покрытия общей толщиной 0,02-0,4 мм. Преимуществом метода перед аналогами является то, что ремонтируемая поверхность не нагревается выше 250 оС, а в результате напыления образуется покрытие с высокой прочностью сцепления и малой пористостью, не выше 1%. Кроме того, метод технологически не сложен и экономически выгоден даже при ремонте отдельных деталей.

Ещё один способ восстановления, который сегодня получает распространение в различных отраслях машиностроения, основан на плазменном напылении ремонтных поверхностей композиционными порошковыми материалами. Эти порошки отличаются тугоплавкой основой и легкоплавкой связкой. Такие покрытия имеют огромную износостойкость и особенно эффективны при нанесении на рабочие поверхности, подверженные трению. Структура нанесённого слоя представляет хромоникелевый раствор и карбидную фазу с упрочняющими частицами связки – карбидами и боридами хрома. Плазменное напыление используют при ремонте шеек коленвалов, постелей и блоков двигателей. Сущность метода состоит в «бомбардировке» ремонтной поверхности частицами порошка, разогретыми до пластического состояния плазменной либо газопламенной струями.

Экономия металла и защита от коррозии в сочетании с повышением надёжности – это тот эффект, который мы получаем при верно выбранном способе восстановления изношенных деталей и узлов. Располагая современным набором методов ремонта, восстановление может реально улучшить первоначальные эксплуатационные свойства деталей.

Поделиться

Для каких целей применяют правку металла

Конфигурация детали может быть нарушена в ходе ее первичной обработки, транспортировки или хранения. Такие заготовки непригодны для дальнейшего использования, но не являются невозвратным, окончательным браком. Правку металла используют с целью возвращения заготовке формы, определенной конструкторско-технологической документацией.

Иногда с целью снижения себестоимости продукции предприятие намеренно приобретает заготовки ненадлежащей формы, в этом случае операция включается в технологический процесс. Плановая правка металла может также быть включена в техпроцесс после операций по термической обработке, вызывающих изменение формы детали. В противном случае работа будет внеплановой, и стоимость ее входит в незапланированные убытки.

Пайка изношенных деталей

Используется в основном при восстановлении или ремонте тонкостенных изделий, изготовленных из разнородных материалов, для устранения дефектов сварных швов и сборке схем электрооборудования. Порядок технологических операций при пайке:

  • Зачистка поверхности.
  • Обработка флюсом.
  • Пайка.

При всём разнообразии способов восстановления деталей стоит учесть, какие металлические конструкции будут подвергаться восстановлению. Исходя из этого выбор варианта осуществляется на основании комплекса задач, которые необходимо решить в конкретном случае. Это экономические параметры, распространенность или уникальность восстанавливаемого изделия, наличие оборудования и материалов, и, в итоге, целесообразность проведения ремонта.

Характеристика восстановления деталей пластической деформацией

Деформирование применяется как для изменения формы и геометрических размеров детали, так и для улучшения эксплуатационных характеристик поверхности изделия (показатель твердости и износостойкости).

С изменением формы все понятно: при прикладывании к твердому телу значительной по величине нагрузки и последующем снятии ее, остается остаточная деформация. Данный способ восстановления деталей машин применяется на практике при необходимости выровнять изделия, которые получили повреждения в результате столкновения. К данному виду работ можно отнести как кузовные работы на автомобиле, попавшем в аварию, так и рихтование толстого стального листа. Часто необходимость проведения обработки давлением возникает после обработки сваркой: при нанесении шва определенные локальные зоны сильно нагреваются, что приводит к линейному расширению определенных элементов сварной конструкции. При остывании происходит обратный процесс – уменьшение в размерах, что приводит к короблению и нарушению геометрии всего изделия. Поэтому при наличии строгих требований по форме и отклонениям конструкции она подвергается обработке давлением с целью исправить дефект.

Также обработка давлением может применяться с целью упрочения поверхностей восстанавливаемого изделия, например, после наплавки или же после механического снятия резанием определенного припуска с детали. Упрочнение деформацией – довольно редкий способ восстановления деталей. Выбор в пользу данной методики осуществляется крайне редко. Это обусловлено тем, что для упрочнения поверхностной пластической деформацией необходимо довольно дорогостоящее оборудование. Приобретать такие станки для того, чтобы изредка ими пользоваться в случае возникновения необходимости в восстановлении, экономически нецелесообразно.

Выравнивание поверхности

Далее следует выровнять поверхность дисков, то есть убрать все царапины и сколы. Эта работа проводится в два этапа:

  1. Сначала металл обрабатывается наждачной бумагой. Для этого нужно взять абразив с размером зерна около 320, и периодически смачивая его, затереть все видимые дефекты на дисках. По окончанию следует сменить наждачную бумагу на Р 1000 и довести поверхность до идеально гладкого состояния.
  2. Второй этап выравнивания перед покраской заключается в работе шпатлевкой. С помощью этого материала заделываются все дефекты, которые не были устранены наждачной бумагой и пескоструйной обработкой.

Обычно шпатлевка помогает избавиться от глубоких царапин, сколов и неровностей, которые были сделаны при шлифовке. После обработки вся поверхность диска затирается мелкой наждачной бумагой до гладкого состояния.

Способ восстановления деталей наплавкой

Данный метод является наиболее распространенным при восстановлении исходных размеров детали. Причина тому – относительная дешевизна и простота. Для восстановления геометрии изделия понадобится лишь сварочный аппарат и необходимый материал для наплавки.

В том случае, если размер очень сильно разбит, то применяется так называемая комбинированная наплавка. Сущность ее заключается в следующем: сначала посредством газопламенного или электродугового нагрева производится нанесение обычной стали или чугуна. А уже затем осуществляется электродуговая наплавка прочного сплава, обладающего хорошим комплексом механических и физических свойств. Качество поверхности после наплавки можно охарактеризовать как неудовлетворительное, поэтому необходимо припуск. Данная операция может проводиться на токарном, фрезерном или на расточном станке. Допускается также использование долбления и абразивного инструмента (если наплавленный материал очень твердый).

Ремонт деталей путем установки втулок, колец и гильз

Установкой колец и втулок восстанавливают изношенные места валов и осей. В процесс восстановления входят следующие операции:

  1. обточка изношенной поверхности детали с учетом возможности напрессовки втулки или кольца со стенками толщиной не менее 2—3 мм;
  2. изготовление новой детали (втулка, кольцо), внутренний диаметр которой должен обеспечивать прессовую посадку на подготовленную изношенную поверхность с натягом по 2-му или 3-му классам точности;
  3. нагрев новой детали до светлокрасного каления и напрессовка ее на подготовленное место.
  4. механическая обработка поверхности под номинальный размер; материалом для изготовления втулок служит сталь и чугун.
  5. термическая обработка, если это предусмотрено техническими условиями, и окончательная механическая обработка (шлифование).

Запрессовка втулок позволяет восстанавливать, почти любое изношенное отверстие. Сущность этого процесса заключается в следующем:

  • а) изношенное отверстие растачивают, а затем развертывают под размер, обеспечивающий последующую запрессовку втулки;
  • 6) новую втулку изготовляют из чугуна, стали или бронзы и запрессовывают в подготовленное отверстие с натягом;
  • в) запрессованную втулку развертывают под размер сопряженной детали (палец, шкворень, вал, подшипник) с учетом получения нужного зазора.

Виды наклепа

Деформационное упрочнение металла классифицируют по процессам, которые активизируются в заготовке во время образования наклепанного слоя. В случае образования новых фаз, отличающихся иным удельным объемом, явление называют фазовым. Если причина изменений – действие внешних сил, наклеп называют деформационным.

Существует две категории:

  1. Центробежно-шариковый. На изделие воздействуют шариками, которые располагаются в гнездах обода установки. Ее принцип действия основан на вращении, когда под влиянием центробежной силы элементы оказывают механическое воздействие на обрабатываемую заготовку.
  2. Дробеметный. Этот метод основан на использовании кинетической энергии. В качестве обрабатывающих элементов используют дробь диаметром до 4 мм, изготовленную из прочного материала: чугуна, стали или керамики. Согласно технологическим требованиям скорость потока может достигать 70 м/с.

Рассмотрим характерные изменения материала, которые происходят при деформационном упрочнении. В результате действия внешних сил элементы внутренней структуры начинают активно перемещаться, что приводит к искажению внутри кристаллической решетки. При этом зерна, ориентация которых носит беспорядочный характер, приобретают четкую структуру – наиболее прочная ось кристаллов будет располагаться вдоль направления деформирования.

Оснастка для правки

Ручная правка листового металла и заготовок из него производится молотками на правильных плитах и специальных рихтовальных бабках.

Правильные плиты (рис. 1, а) могут быть из серого чугуна сплошной конструкции или с ребрами или стальными (рис. 1, б).

Рис. 1. Правильная плита: а — чугунная; б — стальная

Рабочая поверхность плиты должна быть ровной и чистой. Плита должна быть массивной, тяжелой и достаточно устойчивой, чтобы при ударах молотка не было никаких сотрясений.

Плиты устанавливают на металлических или деревянных подставках, которые могут обеспечить кроме устойчивости и необходимую горизонтальность.

Вокруг плиты должно быть достаточно места, чтобы можно было свободно работать.

Рихтовальные бабки (рис. 2, а) изготовляют из стали с термической обработкой. Рабочая поверхность бабки может быть цилиндрической или сферической радиусом 150–200 мм. В качестве рихтовальной бабки для правки хорошо себя зарекомендовал рельс длиной 0,5–1 м. Рельс обладает хорошей устойчивостью, мало подвижен при ударах молотка, не оставляет следов от молотка, не деформируется и удобен для перемещения по плите.

Рис. 2. Инструмент для правки металла: а — рихтовальные бабки; б — молоток

При ручной правке лучше использовать молотки с круглым, а не квадратным бойком, так как углами квадратного бойка можно повредить поверхность выпрямляемого листа. Молоток для правки должен обладать гладкой и хорошо отшлифованной поверхностью бойка (рис. 2, б).

Для правки деталей с окончательно обработанной поверхностью, а также тонких стальных изделий или заготовок из цветных металлов и сплавов применяют молотки из мягких материалов — медные, латунные, свинцовые, деревянные.

При правке особо тонкого металла пользуются металлическими и деревянными брусками — гладилками.

Правку деталей с обработанной поверхностью стальным молотком следует проводить, используя прокладку из мягкого металла.

Для правки тонкого листового и полосового металла служат также металлические и деревянные гладилки и бруски.

Устранение выпуклости на поверхности кузова методом нагрева и быстрого охлаждения.

Основано на использовании процессов
расширения и усадки металла, при нагреве и последующем охлаждении. Ввиду
того, что пластичность кузовной стали при комнатной температуре
недостаточно высокая, применяют ее нагрев. При нагреве мягкой стали до
температуры около 800 °С (красный цвет) она становится пластичной и
легко деформируется. Нет необходимости нагревать всю поверхность, а
достаточно выбрать для этого несколько подходящих точек.

Рис. 6.2. Восстановление формы деталей с использованием
рихтовочного инструмента:
а — устранение деформаций на прямолинейных
участках лицевых панелей; б — исправление деформаций на деталях с
нехруглыми поверхностями (пунктиром показана первоначальная форма
оригинальной детали); в — устранение незначительных вмятин на лицевых
панелях кузова; г — устранение вмятин на лицевых деталях, имеющих
закругленную поверхность (цифры указывают последовательность нанесения
ударов молотка)

Нагрев металла выпуклости на кузове осуществляют угольным
электродом сварочного аппарата (рис. 6.5, а) или пламенем газовой
горелки (рис. 6.5, б). Наиболее удобным для этой цели источником нагрева
является кислородно-ацетиленовая горелка № 0.

При нагреве точки металла узким пламенем
кислородно-ацетиленовой горелки небольшой круг металла быстро
разогревается докрасна и пластичность металла при этом резко возрастает.
Так как расширению нагретого металла препятствует менее нагретый
окружающий металл, то увеличение его объема происходит за счет
утолщения. Как только металл разогреется докрасна, горелка отводится, и
начинается охлаждение: нагретый круг металла становится темно-красным,
черным и продолжает далее охлаждаться.

При охлаждении металл сжимается, его объем уменьшается, но
удерживается расположенным вокруг холодным металлом, ни длина, ни ширина
которого не изменялась. Так как металл имеет температуру, не
соответствующую максимальной пластичности, то, сжимаясь, он поглощает
небольшую часть удлинения окружающего металла. Усиление процесса
осаживания металла производят уменьшением скорости распространения тепла
путем создания кольца вокруг нагретой части металла из мокрой ткани,
противодействием деформации путем нажатия на металл ручкой молотка или
трубой вблизи нагретой точки, выстукиванием границ точки металла,
нагретого докрасна, а затем и самой нагретой точки киянкой или
рихтовоч-ным молотком.


Рис. 6.3. Рихтовка небольших деформированных участков
панелей:
а — схема процесса рихтовки: б — дефектный участок после
выполнения рихтовки


Рис. 6.4. Рихтовка поверхности кузова в легкодоступном
месте (переднее крыло) с использованием различных рихтовочных
инструментов


Рис. 6.5. Устранение выпусклостей на поверхности кузова
методом нагрева и быстрого охлаждения:
а — нагрев металла
угольным электродом сварочного аппарата: б — нагрев металла пламенем
газовой горелки; в — последовательность охлаждения нагретой поверхности
кузова с выпуклостью

Резкое охлаждение нагретого участка кузова выполняют
тампоном асбестовой смеси или ткани, смоченной водой. Охлаждение металла
приводит к нужной осадке и принятию поверхностью кузова требуемого
профиля. При устранении выпуклости поверхности кузова данным методом
следует придерживаться последовательности охлаждения, указанной на рис.
6.5, в.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: