Назначение и технические требования системы зажигания

Батарейная система — зажигание

Батарейная система зажигания включает: прерыватель-распределитель, катушку зажигания, свечи и провода.

Батарейная система зажигания применяется в автомобильных и мотоциклетных двигателях, система зажигания от магнето — в мотоциклетных, лодочных, тракторных, авиационных и стационарных двигателях.

Батарейная система зажигания, схема которой представлена на рис. 105, состоит из следующих приборов: катушки зажигания 2, прерывателя 8 тока низкого напряжения, распределителя тока 6, искровых зажигательных свечей 10, выключателя зажигания / и проводов низкого и высокого напряжения.

Батарейная система зажигания на сегодняшний день технически устарела и вследствие ряда присущих ей принципиальных недостатков стала тормозом на пути дальнейшего совершенствования автомобильных двигателей. Поэтому как у нас в стране, так и за рубежом проводятся многочисленные исследования, имеющие целью усовершенствовать батарейную систему зажигания или заменить ее принципиально иной, с лучшими техническими характеристиками.

5 Катушка зажигания.

Батарейная система зажигания служит для зажигания нужные моменты рабочей смеси в цилиндрах карбюраторного двш теля электрической искрой.

Батарейная система зажигания двигателя состоит из аккумулятора, генератора, распределителя зажигания, катушки, свечей, проводов и замка зажигания. Основным признаком неисправной работы зажигания является слабая искра. О мощности ее судят по величине межэлектродного промежутка, который она может преодолеть. При хорошем состоянии системы зажигания искра без перебоев преодолевает межэлектродный промежуток в 6 — 7 мм.

8 Принципиальная схема батарейной системы зажигания.

Работа батарейной системы зажигания происходит следующим образом. При вращении вала двигателя вращается кулачок и контакты прерывателя попеременно замыкаются и размыкаются.

Недостатком обычной батарейной системы зажигания является обгорание контактов прерывателя вследствие искрообразования в момент размыкания контактов. В результате этого увеличивается сопротивление контактов, а следовательно, уменьшается мощность искры в свечах зажигания.

В батарейную систему зажигания входят ( рис. 82): источники тока — батарея 14 и генератор 12, катушка зажигания 2, прерыватель 8 тока низкого напряжения, распределитель 6, искровые зажигательные свечи 10, включатель зажигания / и соединительные провода низкого и высокого напряжения.

В батарейную систему зажигания входят ( рис. 93): источники тока — батарея 14 и генератор 12, катушка зажигания 2, прерыватель 8 тока низкого напряжения, распределитель 6, искровые зажигательные свечи 10, включатель зажигания / и соединительные провода низкого и высокого напряжения.

В обычной батарейной системе зажигания с этим недостатком борются путем замыкания добавочного резистора ( см. рис. 12) одновременно с включением стартера. Следовательно, при размыкании Кцоб после запуска двигателя напряжение питания, а значит, вторичное напряжение и энергия искрообра-зования будут уменьшаться с увеличением частоты вращения коленчатого вала двигателя.

Цикл работы батарейной системы зажигания может быть разбит на следующие два этапа: нарастание первичного тока после замыкания контактов прерывателя и процессы, происходящие после размыкания контактов прерывателя.

Принципиальная схема батарейной системы зажигания приведена на рис. 159, а. В этот момент первичная цепь размыкается и во вторичной обмотке катушки 6 индуктируется высокое напряжение, вызывающее искровой разряд в запальной свече.

Схема и принцип действия батарейной системы зажигания

Батарейная система зажигания состоит (рис. 14) из катушки зажигания 3, прерывателя-распределителя 5, искровых свечей 4 и выключателя зажигания 1. Система зажигания получает питание от аккумуляторной батареи 2 или генератора.

В системе батарейного зажигания имеются две цепи —

— цепь низкого напряжения

— цепь высокого напряжения.

В цепь низкого напряжения входят источник тока, выключатель зажигания, первичная обмотка катушки зажигания с дополнительным сопротивлением и прерыватель.

Цепь высокого напряжения состоит из вторичной обмотки катушки зажигания, распределителя, проводов высокого напряжения, свечей зажигания.

Рис. 14. Схема батарейного зажигания

Схема батарейного зажигания состоит:

1 — выключатель зажигания; 2 — аккумуляторная батарея; 3 — катушка зажигания; 4 — свечи зажигания искровые; 5 — прерыватель-распределитель; 6 — ротор; 7 — кулачок; 8 — контакты прерывателя; 9 — конденсатор; 10 — первичная обмотка; 11 — вторичная обмотка; 12 — контакты выключения дополнительного резистора (устанавливаются в реле стартера);

RД — добавочный резистор (вариатор);

RУ — сопротивление утечки (нагар) (в скобках указана новая маркировка клемм катушки зажигания).

При включенном замке зажигания и замкнутых контактах прерывателя ток от положительной клеммы аккумуляторной батареи пойдет через добавочное сопротивление в первичную обмотку катушки зажигания, создавая в ней магнитное поле. Если контакты разомкнуть, то магнитное поле исчезнет. Вследствие этого в витках первичной и вторичной обмоток будет возникать ЭДС. Число витков во вторичной обмотке значительно больше, чем в первичной (12—18 тыс.), поэтому в ней индуктируется ЭДС около 20000 В, создающая высокое напряжение на электродах зажигательной свечи. Под действием высокого напряжения между электродами свечи возникнет искровой разряд, воспламеняющий рабочую смесь в цилиндре двигателя. Величина индуктируемой во вторичной обмотке ЭДС будет тем больше, чем больше величина тока в первичной обмотке в момент размыкания контактов прерывателя, чем больше коэффициент трансформации (отношение числа витков первичной обмотки к числу витков вторичной обмотки), чем больше скорость размыкания контактов.

Ток высокого напряжения проходит по следующему пути: из вторичной обмотки через вывод ВН и уголек крышки распределителя на электрод ротора, откуда через искровой промежуток 0,2—0,5 мм на один из электродов крышки распределителя и далее по проводу к центральному электроду зажигательной свечи.

Пробивное напряжение не постоянно и зависит от многих факторов. Основными из них являются: величина зазора между электродами свечи, температура электродов свечи и горючей смеси, давление и форма электродов. У двигателя, работающего на больших частотах вращения с полной нагрузкой, пробивное напряжение минимальное (4—5 тыс. В), а в режимах холостого пуска двигателя — оно максимально.

При пуске двигателя катушки зажигания питаются от аккумуляторной батареи, напряжение которой понижено из-за потребления стартером большого тока. Для устранения этого явления в некоторых катушках зажигания применяется добавочный резистор.

Коммутатор Восход — электронный КЭТ-1

Коммутатор электронный КЭТ-1 предназначен для работы в системе зажигания в комплекте с генератором Г-427 и высоковольтным трансформатором Б-300Б. Позволяет получить вторичное напряжение до 18 кв, при частоте вращения ротора генератора от 250 до7500 об/мин. Коммутатор установлен в правом инструментальном ящике. Основание коммутатора соединено с массой мотоцикла. При выходе из строя коммутатор можно разобрать и отремонтировать

Коммутатор электронный имеет три выходные клеммы с буквенной маркировкой на корпусе <<�Г>>, <<�К>> и <<�Д>>. Массовой клеммой служит основание коммутатора.

Уход за коммутатором в процессе эксплуатации сводится в основном к подтягиванию резьбовых соединений, не допуская при этом срыва резьбы. Необходимо оберегать коммутатор от попадания внутрь него и на клеммы влаги от резких ударов и воздействия высоких температур. Следует также систематически проверять надежность электрического соединения основания коммутатора с << массой >>, т.к. при нарушении этого условия прекращается искрообразование на свече.

Принцип действия[править | править код]

Батарейная система зажигания

Батарейная система зажигания работает аналогично системе с маховичным генератором, но имеет ряд значительных отличий. Питание от батареи поступает к первичным обмоткам катушки зажигания, дополняют цепь замкнутые контакты прерывателя. Они присоединяются к катушке зажигания

последовательно, а не параллельно ей, как это выполнено в системе с маховичным генератором.

Магнитное поле, генерируемое в первичной обмотке, поддерживается до тех пор. пока кулачок не разомкнет контакты прерывателя. Как только это происходит, прерывается питание первичной обмотки, поле исчезает, и во вторичной обмотке индуцируется высоковольтный импульс, вызывающий образование искры. Включенный в схему конденсатор выполняетту же самую функцию, что и в системе зажигания с маховичным генератором. Принцип действия такой системы носит название «исчезающего поля».

Устройство

Система зажигания автомобиля ГАЗ 53 в настоящее время является бесконтактной. Изучив устройство и принцип действия, можно попутно овладеть навыками поиска и устранения неисправностей. Особенно, это необходимо тем, кто эксплуатирует ГАЗ 53. Ведь часто бывает так, что рядом нет хороших специалистов, которые помогли бы в решении возникших проблем. К тому же за их услуги придётся платить. Качество проделанной работы можно определить иногда спустя некоторое время. Неисправность, возникшая неожиданно и в неподходящий момент, создаст неприятности.

Элементы системы

Система зажигания автомобиля ГАЗ 53 состоит из нескольких элементов, каждый из которых выполняет свою функцию. Зная их, можно гораздо быстрее найти и устранить неисправность. Система состоит из следующих элементов:

  • Аккуммуляторная батарея;
  • Коммутатор;
  • Свечи зажигания;
  • Датчика распределитель;
  • Высоковольтные и низковольтные провода;
  • Катушка зажигания;
  • Дополнительное стартерное реле;
  • Добавочный и помехоподавляющий резистор;
  • Указатель тока;
  • Замок зажигания.

Все составляющие элементы можно сгруппировать в зависимости от выполняемых задач. В этом случае, они будут входить в соответствующие группы. Система зажигания автомобиля ГАЗ 53 будет работать правильно, когда соблюдены основные условия:

  • Сопоставление момента возникновения искры и работы двигателя;
  • Достаточная мощность искры;
  • Отсутствие пропусков в искрообразовании.

Для своевременной подачи искры нужно тщательно соотнести такты работы двигателя и появление напряжения на электродах свечи. Нужная мощность искры, в свою очередь, зависит от величины напряжения, зазоров между электродами свечи и исправности цепи. Отсутствие искры приводит к снижению мощности и увеличению расхода топлива, поэтому пропуски недопустимы.

Своевременная искра

Сопоставление определённого такта и подачи напряжения на свечи является задачей датчика-распределителя. Бесконтактная система зажигания автомобиля ГАЗ 53 может быть снабжена магнитоэлектрическим или полупроводниковым датчиком-распределителем, который находится внутри трамблёра. Перечень элементов трамблёра включает в себя:

  • Датчик-распределитель;
  • Токоразносная пластина (бегунок);
  • Центробежный и вакуумный регулятор.

Магнитоэлектрический датчик ГАЗ 53 представляет собой генератор импульсов переменного тока, частота которых зависит от оборотов двигателя. Это устройство имеет восемь полюсов (по числу цилиндров). В процессе вращения распределительного вала, а вместе с ним и ротора датчика происходит последовательное прохождение полюсов постоянного магнита через полюсы обмотки статора. В результате изменяющегося магнитного потока в обмотке наводится ЭДС индукции, которая создаёт управляющий импульс для коммутатора.

Центробежный регулятор поворачивает ротор датчика относительно статора, что, в свою очередь, изменяет угол опережения зажигания ГАЗ 53. Это происходит при увеличении оборотов вращения коленчатого вала двигателя. Грузики регулятора, преодолевая усилие пружин, поворачивают ротор. Таким образом, усилие должно быть определённым, иначе это отразится на работе ГАЗ 53.

Вакуумный регулятор поворачивает статор относительно ротора, изменяя угол. Он работает в зависимости от нагрузки и оборотов двигателя.

Схемы электронного зажигания для двухтактных двигателей

Как жаль, что не все оппозитчики могут насладиться ровной и правильной работой двигателя своего любимца. Ведь это не достижимо при использовании штатной контактной системы зажигания. Надеюсь, эта статья поможет вам преобразить вашего железного коня и приблизить его к зарубежным собратьям.

Плюсы перехода на транзисторные системы зажигания общеизвестны. При использовании мощного транзистора в качестве коммутирующего элемента в цепи катушки зажигания, увеличивается мощность искрового разряда, а контакты прерывателя разгружаются от больших токов и не выгорают от искрения при выключении катушки зажигания. Применяя бесконтактный датчик вместо прерывателя можно избавиться от перебоев в искрообразовании, уменьшить погрешность между моментами поджига горючей смеси в правом и левом цилиндре.

Остаётся ещё одна проблема. Дело в том, что примитивные пружинки и грузики центробежного регулятора не могут обеспечить оптимальную зависимость угла опережения зажигания от оборотов двигателя. Не устойчивая работа центробежника на низких оборотах так же оставляет желать лучшего.

От всех этих недостатков избавлены микроконтроллерные системы зажигания. О подобном устройстве и пойдёт речь в данной статье.

Схема электронного зажигания собрана на контроллере ATtiny2313-20PU фирмы Atmel. Сигнал с датчика подаётся на вход Х1. Микроконтроллер производит обработку сигнала с датчика, вычисляет оптимальные моменты включения и выключения катушки зажигания. Коммутация последней осуществляется транзисторными ключами, управляемыми выходным сигналом контроллера.

Для заливки и обновления прошивки имеется разъём ISP (in system programming, внутрисистемное программирование), к которому подключается программатор.

Технические характеристики устройства:

минимальная частота вращения при которой устройство осуществляет регулировку угла — 90 об/мин;

ограничение максимальных оборотов двигателя на уровне 6500 об/мин.;

среднее время накопления энергии в катушке зажигания — 2 мсек.;

в устройтве реализован аварийный режим с непрерывным искрообразованием частотой 200Гц. Для входа в него необходимо подать +12В на вход схемы Х1 и включить питание. При использовании аварийного режима для проверки/прогрева свечей достаточно ввести шторку в датчик и также включить питание. Выход из аварийного режима происходит при снятии +12В с входа схемы;

катушка зажигания применяется низкоомная двухвыводная от бесконтактных систем зажигания (сопротивление первичной обмотки 0.3 – 0.5 Ом, например от инжекторной Волги или Оки);

существует несколько вариантов прошивок с различными кривыми УОЗ.

Для скачивания нужной прошивки сделайте клик по соответствующему графику

Кривая№1 — золотая серединаКривая№2 — резвая одиночкаКривая№3 — колясочникКривая№4 — двухтактник

Прошивка контроллера осуществляется простейшим программатором, который подключается к СОМ – порту компьютера с помощью 9-pin(25-pin) разъёма (мама). Принципиальная схема программатора приведена ниже.

Последовательность действий при работе с программой:

перед её запуском, необходимо подключить программатор к контроллеру;

подать питание на схему зажигания;

проследить, не занят ли используемый СОМ – порт каким либо приложением;

если порт занят, то необходимо завершить данное приложение (в диспетчере задач) или использовать свободный порт;

после первого запуска программы вы получите сообщение «мк не откликнулся. Проверьте порт или подключение», т.к. по умолчанию производится связь с LPT – портом;

нажимаем в колонке «Fuse(low)» кнопку «Read», при этом программа прочитает фьюзы из микросхемы

Датчик можно применять любой, имеющий более 3.5 вольт на выходе при наличии внутри его металла. Один из самых распространенных датчиков — это автомобильный датчик Холла.

Существует несколько вариантов реализации шторки:

Шторка устанавливается на распредвал «Урал/Днепр» и имеет два симметричных лепестка по 18 градусов

Важно, чтобы они были абсолютно одинаковыми. Доводить «одинаковость» лепестков удобно по меткам на маховике фломастером

Метки моментов входа/выхода шторки от левого и правого цилиндра должны совпадать.

Шторка устанавливается на коленвал — нужен один лепесток в 36 град. (с противовесом).

Шторка устанавливается в трамблёр авто с четырёхцилиндровым мотором + два коммутатора и два датчика разнесённых на 90 град — аналогично п.1.

Шторка устанавливается на коленвал двухтактного двухцилиндрового мотора — аналогично п.1.

Шторка устанавливается на коленвал двухтактного одноцилиндрового мотора — аналогично п.2.

Управление опережением зажигания[править | править код]

При подаче на катушку зажигания постоянного, стабилизированного напряжения появляется теоретическая возможность получения искры в любой точке цикла двигателя. Для осуществления этого на практике необходима система изменения угла опережения зажигания (или момент воспламенения).

Ручной механизм управления опережением зажигания

Управление первыми системами производилось вручную, при помощи рычага на руле, позволяющего уменьшать опережение при запуске или низких частотах вращения и увеличивать опережение, когда это требуется, при возрастании частоты вращения двигателя. На простых одноцилиндровых четырехтактных двигателях это устройство работало достаточно эффективно (заставляя мотоциклиста не забывать об уменьшении опережения зажигания перед запуском, чтобы избежать сильной обратной отдачи педали кик-стартера в ногу). Но на более сложных многоцилиндровых двигателях стало очевидно, что необходима система постоянной автоматической регулировки опережения зажигания, поэтому был создан автоматический регулятор опережения зажигания (ATU).

К главным недостаткам батарейной системы зажигания можно отнести то, что запуск двигателя зависит от степени заряженности батареи, а также присутствие большого количества подвижных частей. Это означает, что износ, происходящий в большинстве узлов системы, требует регулярного обслуживания для поддержания ее эффективной работы.

Это необходимо и из-за улучшения конструкции двигателя, позволяющей достигать более высоких частот вращения двигателя и применять повышенные степени сжатия. Высокие частоты вращения двигателя означают увеличение износа подвижных узлов контактного прерывателя и нарушение точности из-за центробежной силы, благодаря которой контакты расходятся на величину, превышающую необходимую. При увеличении степени сжатия для образования искры требуется более высокое напряжение, а высокие напряжения приводяткподгораниюповерхностейконтактов прерывателя. Для дальнейшего повышения точности необходимо устранить все возможные механические узлы системы. С этой задачей справляется .

Микропроцессорный вид зажигания

Микропроцессорная система зажигания – это одна из разновидностей электронного зажигания. Используется для создания некой зависимости опережения зажигания в установках с карбюраторной системой питания от давления воздуха в коллекторе, а также от частоты вращения в двигателе коленчатого вала.

Микропроцессорная электронная система зажигания обладает очень большим количеством достоинств по сравнению со стандартной комплектацией автомобилей с карбюраторной системой питания.

– Существенно уменьшается уровень расхода. Это происходит благодаря оптимизации сгорания подаваемой смеси.

– Улучшаются все динамические характеристики автомобиля.

– Улучшается работа двигателя, переходы между передачами становятся более плавными. Нет потерь мощности на низких оборотах.

– Микропроцессорная система зажигания подразумевает установку ГБО, в результате этого и происходит экономия топлива, а также уменьшается стоимость каждого километра пути.

– Есть возможность установки дополнительного переключателя для смены режимов. К примеру, между видами топлива.

Сегодня система зажигания ВАЗ позволяет установить данную схему для улучшения всех динамических показателей. Такая возможность снова возвращает ВАЗ в строй актуальных автомобилей, благодаря низкой цене, но при этом с неплохими скоростными характеристиками.

Схема устройства контактной системы батарейного зажигания:

а) схема; б) положения ключа выключателя зажигания и стартера; 1 – рычажок прерывателя; 2 – подвижный контакт; 3 – неподвижный контакт; 4 – кулачок; 5 – прерыватель низкого напряжения; 6 – конденсатор; 7, 14, 23 – провода; 8 – выключатель зажигания; 9 – добавочный резистор; 10 – первичная обмотка; 11 – вторичная обмотка; 12 – катушка зажигания; 13 – магнитопровод; 15 – выключатель добавочного резистора; 16 – амперметр; 17 – аккумуляторная батарея (АКБ); 18 – выключатель электродом; 19 – ротор с электродом; 20 – распределитель; 21, 24 – подавительные резисторы; 25 – свеча зажигания; 26 – ключ выключателя зажигания.

Контактная система батарейного зажигания состоит изаккумуляторной батареи 17, катушки зажигания 12, прерывателя 5 низкого напряжения с конденсатором 6, распределителя импульсов высокого напряжения 20, свечей зажигания 25, выключателя зажигания 8, амперметра 16. Прерыватель 5 имеет два контактанеподвижный 3 соединенный с массой и подвижный 2, расположенный на рычажке 1 и соединенный с проводом 7 с первичной обмоткой 10 катушки зажигания. В прерывателе установлен вращающийся валик с кулачком 4, при помощи которого размыкаются контакты. В системе зажигания в качестве источника электрического тока используется генератор переменного тока.

При замыкании контактов прерывателя ток от АКБ проходит по первичной обмотке катушки зажигания, создавая вокруг нее магнитное поле.

Цепь низкого напряжения следующаяположительный вывод АКБ 17 – амперметр 16 – выключатель зажигания 8 добавочный резистор 9 – первичная обмотка 10 – провод 7 – подвижный контакт 2 – неподвижный контакт 3 – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ.

При размыкании контактов прерывателя обесточивается первичная обмотка катушки зажигания и резко уменьшается магнитное поле. Магнитный поток исчезающего поля пересекает витки вторичной и первичной обмоток, при этом индуктируется электродвижущая сила (ЭДС) высокого напряжения во вторичной и ЭДС самоиндукции в первичной обмотках. Возникающие во вторичной обмотке импульсы высокого напряжения подводятся к свечам зажигания в соответствии с порядком работы цилиндров двигателя. Вращающийся ротор 19 своим электродом распределяет импульсы высокого напряжения по электродам крышки распределителя. Частота вращения ротора в 2 раза меньше частоты вращения коленчатого вала и, таким образом, совпадает с частотой вращения кулачка прерывателя.

Положение пластины ротора напротив каждого из электродов крышки распределителя соответствует разомкнутому состоянию контактов прерывателя.

Цепь высокого напряжениявторичная обмотка11 – провод 14 высокого напряжения – подавительный резистор 21 – электрод ротора 19 – один из электродов крышки распределителя 20 – провод 23 – подавительный резистор 24 – свеча зажигания 25 – центральный электрод свечи – боковой электрод свечи – масса – выключатель 18 цепи АКБ – отрицательный вывод АКБ 17 – положительный вывод АКБ 17 – амперметр 16 – выключатель зажигания 8 – добавочный резистор 9 – первичная обмотка 10 – вторичная обмотка катушки зажигания 12.

В первичной обмотке ток самоиндукции возникает при замыкании контактов прерывателя. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, нежелательно, так как при размыкании контактов увеличивается период искрообразования между ними, снижаются эффективность и надежность системы зажигания. Параллельно контактам прерывателя включен конденсатор 6. В момент размыкания цепи низкого напряжения конденсатор заряжается током самоиндукции, а затем при разомкнутых контактах разряжается через первичную обмотку.

Выключатель зажигания 8 необходим для остановки работающего двигателя размыканием первичной обмотки катушки зажигания. Он нужен и для включения зажигания перед пуском двигателя. Ключ 26 выключателя зажигания может занимать четыре положения 0 – зажигания выключено; 1 – зажигание включено; 2 – включены зажигание и стартер; 3 – подведено питание к радиоприемнику. В положении 0 ключ можно вставить и вынуть из замка зажигания. После пуска двигателя ключ выключателя зажигания переводят в положение 1.

Выключатель 18 цепи АКБ нужен для отключения батареи от массы при выполнении электротехнических работ и для остановки автомобиля на длительное время. Выключатель 18 защищает электрооборудование от короткого замыкания или от пожара при неисправной проводке, а также позволяет отключить батарею от всех потребителей электрической энергии, непосредственно не отсоединяя провода, отходящие от нее. В этом случае остается включенным аварийное освещение – плафон кабины и розетка переносной лампы.

Контактная (батарейная) система зажигания

Система зажигания двигателя с принудительным воспламенением рабочей смеси должна обеспечить увеличение напряжения аккумуляторной батареи или генератора (в зависимости от режима работы двигателя) до величины, необходимой для возникновения электрического разряда между электродами свечи зажигания, и в требуемый момент (момент зажигания) подать это напряжение на соответствующую свечу. Момент зажигания характеризуется углом опережения зажигания, который представляет собой угол поворота коленчатого вала двигателя, отсчитываемый от положения вала в момент подачи искры до положения, когда поршень приходит в верхнюю мёртвую точку (ВМТ).

Применявшиеся ранее и применяемые в настоящее время системы зажигания получают необходимую высоковольтную энергию не непосредственно от аккумуляторной батареи, поскольку для пробоя электрической дугой воздушного зазора между электродами свечи зажигания напряжения 12-вольтовой батареи явно не хватит. Для возникновения дуги между электродами свечи зажигания требуется напряжение не менее 8000 В, а при многих режимах работы двигателя значительно большее. По этой причине необходимо существенно увеличить напряжение аккумуляторной батареи посредством промежуточного преобразователя и накопителя энергии, который, в зависимости от способа преобразования и аккумулирования энергии, может быть индуктивным или емкостным.

В системах зажигания автомобильных двигателей наиболее широко используются индуктивные накопители электрической энергии, использующие в своей работе явление самоиндукции, возникающее в трансформаторе при прохождении через одну из его обмоток переменного тока. Возникает вопрос – откуда в бортовой сети автомобиля с неработающим двигателем, может появиться переменный ток? Ведь аккумуляторная батарея – источник постоянного тока.

Для ответа на этот вопрос следует вспомнить – что, по определению, называется переменным электрическим током? Это ток, который с течением времени изменяется по величине и (или) по направлению. Следовательно, если цепь, соединяющую выводы аккумуляторной батареи, периодически выключать и включать, то в периоды нарастания тока и его исчезновения (которые характеризуются определенными временными отрезками) в цепи протекает именно переменный ток, изменяющийся с течением времени по величине (от нуля до 12 вольт и наоборот). А раз в цепи присутствует переменный ток, то посредством явлений индукции и самоиндукции его напряжение можно изменять по величине до требуемого значения.

Именно это свойство переменного тока используется во всех известных системах зажигания. Разница заключается лишь в использовании прерывателей и накопителей электроэнергии различных принципиальных конструкций, способных эффективно отдать накопленную энергию для возникновения дуги между электродами свечи.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: