Регулировка карбюратора своими силами

Двухфазные устройства

Двухфазное зарядно-пусковое устройство для автомобиля на сегодняшний день является самым распространенным. Трансформаторы для него, как правило, подбираются разделительного типа. При этом электрическая катушка устанавливается непосредственно на него. В данном случае мощность трансформатора рассчитывается исходя из показателя предельного напряжения.

Блоки питания для цепи подходят на 20 В. Чтобы сделать разъем под силовой кабель, многие специалисты советуют использовать конвекционные конденсаторы. При этом зажимы можно подобрать отдельно. Стабилизаторы в данном случае целесообразнее устанавливать многоканальные. Если электронная катушка куплена качественная, то фильтры для прибора можно не подбирать.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Проверка зазоров между электродами

Свечу зажигания выкручивают, отверстие закрывают заглушкой. Нагар на свече устраняют ее помещением на несколько минут в ванночку с бензином. Изолятор очищают специальной щеткой, корпус и электроды — металлическим скребком. Зазор между электродами проверяют щупом: его величина должна быть в пределах 0,5-0,75 миллиметра. Регулировка зазора осуществляется подгибанием бокового электрода в случае необходимости.

Исправность свечи проверяется посредством ее подключения к магнето проводами и прокручиванием коленчатого вала до появления искры. После проверки и обслуживания свеча возвращается на место и закручивается.

Работа карбюратора под высокими нагрузками

Нередко бывают случаи, при которых механизмы испытывают чрезмерные нагрузки. Так что же происходит в таких ситуациях в самом карбюраторе?

Первым принимает удар пусковой двигатель. В нем открывается дроссельная заслонка, степень разряженности увеличивается во всех отсеках, горючее поступает в смесительную камеру. Так как нужно выполнить сложную работу, в камеру горения поступает больше топлива чем обычно. Разряжаться жидкость начинает уже у самих отверстий для холостого хода, в момент открытия заслонки.

Со временем уменьшаются объемы топлива, находящегося в полости бака, снижается над диафрагменное давление. А давление под диафрагмой претерпевает лишь незначительные изменения.

Возникает разница давлений, диафрагма задевает рычаг, открывается клапан. Верхняя камера заполняется новой партией топлива. Когда в баке становится недостаточно места, давление в обеих частях нормализуется и отверстие снова закрывается. Этот цикл может повторяться бесконечно.

Снятие пускового двигателя

Разбор и сборка пускового двигателя П-23У

Снять и заменить некоторые узлы и детали пускового двигателя можно, не снимая его с дизеля, непосредственно на тракторе. Снять отдельно можно воздухоочиститель, карбюратор, впускной и выпускной коллекторы, головку цилиндров, кронштейн с толкателями клапанов и клапаны, магнето, механизм проворачивания вала, регулятор, корпус распределительных шестерен. Муфту механизма включения, шестерню включения и толкатель с пружинами можно снять и заменить также на тракторе, предварительно сняв верхнюю половину кожуха муфты сцепления трактора. При разборке блока, муфты сцепления и.редуктора пусковой двигатель снимите с дизеля.

Перед снятием пускового двигателя (см. рис. 98) убедитесь в том, что шестерня включения выведена из зацепления с венцом маховика дизеля. Для этого выключите зажигание, включите муфту сцепления и редуктор. Проверните заводной рукояткой коленчатый вал пускового двигателя и убедитесь, что вентилятор дизеля не вращается, а значит шестерня выведена из зацепления.

При невозможности вывести из зацепления шестерню включения пуском дизеля, откройте люк верхней половины кожуха муфты сцепления дизеля, сожмите концы защелок муфты включения и выведите из зацепления шестерню.

Снятие. Слейте охлаждающую жидкость из системы охлаждения дизеля и масло из поддона пускового двигателя. Закройте краник бензобачка. Снимите воздухозаборник и заднюю крышу капота. Отсоедините от карбюратора топливную трубку, тросики управления заслонками, тягу регулятора. Отсоедините тяги от рычагов управления муфтой 4 сцепления, редуктора 3 и стартера 5. Снимите рычаги муфты сцепления и редуктора. Выверните четыре болта и снимите кронштейн с валиком 7 заводной рукоятки. Отсоедините впускной и выпускной коллекторы пускового двигателя 6 от выпускного коллектора дизеля.

Отсоедините резиновый шланг сигнализатора засоренности от воздухоочистителя дизеля. Ослабьте хомут на рукаве патрубка воздухоочистителя дизеля. Отверните восемь гаек с болтов кронштейнов воздухоочистителя и снимите его с дизеля. Снимите правый кронштейн воздухоочистителя и трубу, соединяющую турбокомпрессор с выпускным коллектором дизеля, вывернув четыре болта крепления верхнего и четыре болта крепления нижнего патрубков. Выверните четыре болта крепления водоотводящей трубы из головок цилиндров дизеля и два болта крепления из головок цилиндров пускового двигателя. Снимите водоотводящую трубу. Выверните четыре болта крепления водоподводящей трубы из блока пускового двигателя и два болта крепления из блока дизеля. Снимите трубу.

Отсоедините от турбокомпрессора трубку подвода масла, провод датчика указателя давления масла и сливную трубку. Отверните две гайки крепления к головке цилиндров заднего кронштейна воздухоочистителя дизеля, гайку крепления коллекторов дизеля и снимите кронштейн.

Застропите турбокомпрессор с выпускным коллектором и выпускной трубой, отверните три гайки крепления коллекторов и снимите турбокомпрессор. Снимите впускной коллектор с выхлопной трубой пускового двигателя.

Застропите пусковой двигатель как показано на рис. 99.

Оперативно и компетентно проконсультируем по всей имеющейся базе запчастей Т-170, Т-130, Д-160, Д-180, ДЗ-98, ОБ10.

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Карбюратор от пускача ПД-10

Для приготовления горючей смеси на пусковом двигателе устанавливается однокамерный без поплавковый горизонтальный карбюратор, в котором поступление топлива к дозирующим элементам, жиклерам, автоматически регулируется специальной диафрагмой.

Устройство

  • корпус
  • воздушная и дроссельная заслонка
  • механизм топливного клапана
  • диафрагма
  • крышка
  • главная дозирующей системы
  • система холостого хода.

К главной дозирующей системе относятся:

  • диффузор Б, выполненный в виде сужения корпуса,
  • пластинчатый клапан
  • жиклер-распылитель.

Система холостого хода:

  • топливный жиклер Г холостого хода
  • каналы В и Д холостого хода
  • выходные отверстия А
  • воздушный жиклер
  • винт регулирования состава смеси
  • рычажок и упорный винт на оси дроссельной заслонки.

Диафрагма с корпусом и крышкой образует две камеры: верхнюю — над диафрагмой и нижнюю — под диафрагмой.

Верхняя камера с помощью клапана сообщается с топливным баком через клапан, а жиклер-распылитель и выходные отверстия А — со смесительной камерой карбюратора.

Нижняя камера балансировочным отверстием соединяется с атмосферой. Рычажок пружиной удерживает клапан в закрытом состоянии.

Рисунок 1. а — общий вид (верхний); б — схема работы (нижний рисунок);

1 — корпус; 2 — дроссельная заслонка; 3— упорный винт; 4 — винт регулирования состава смеси; 5 — автоматический клапан; 6 — воздушная заслонка; 7 — воздушный жиклер; 8 — жиклер-распылитель; 9 — диафрагма; 10 — кнопка утопителя; 11 — пружина; 12 — рычажок; 13 — крышка корпуса; 14 и 15 — клапаны.

Принцип работы

Перед пуском холодного двигателя воздушную заслонку закрывают. При этом дроссельная заслонка открывается под действием пружины регулятора пускового двигателя. После продолжительной остановки двигателя, необходимо нажать на кнопку утопителя.

  • При этом диафрагма нажимает на рычажок, клапан открывается, и топливо поступает в камеру над диафрагмой.
  • При вращении коленчатого вала двигателя в смесительной камере карбюратора создается разрежение.
  • Под действием разрежения топливо поступает через жиклер-распылитель.
  • Топливовоздушная смесь через распыливающие отверстия холостого хода, подается в смесительную камеру, образуется переобогащенная горючая смесь.
  • Это создает условия для надежного пуска двигателя.
  • Сразу после пуска горючая смесь обедняется, так как включается в работу автоматический клапан на воздушной заслонке.
  • По мере прогрева двигателя воздушную заслонку открывают.

  Агротехнические требования к обработке почвы

Холостой ход

После пуска двигателя дроссельная заслонка под действием регулятора закрывается, а воздушная открывается. В диффузоре Б, разрежение мало, поэтому топливо из жиклера-распылителя не поступает. Топливовоздушная смесь проходит в смесительную камеру через отверстие А, так как за дроссельной заслонкой большое разрежение.

Величина открытия дроссельной заслонки определяет минимальную частоту вращения коленчатого вала двигателя в режиме холостого хода.

Положение заслонки и качество горючей смеси регулируется винтом.

Режим работы под нагрузкой

При увеличении нагрузки на пусковой двигатель дроссельная заслонка открывается, разрежение в диффузоре увеличивается, топливо поступает в смесительную камеру через жиклер-распылитель. По мере открытия дроссельной заслонки, больше топлива подается в смесительную камеру.

Разрежение понижается у отверстий холостого хода,  при открытии дроссельной заслонки. Поэтому топливо через эти отверстия не поступает, а распространяется только через жиклер-распылитель.

По мере расходования топлива из камеры, над диафрагмой давление становится ниже атмосферного давления под диафрагмой.

Под действием разницы давлений диафрагма прогибается вверх, нажимает на рычажок и открывает клапан. Верхняя камера над диафрагмой заполняется топливом. Давление над диафрагмой и под ней выравниается по мере заполнения верхней камеры, и диафрагма перемещается вниз. Клапан под действием пружины закрывается, так цикл повторяется.

Как проверить давление масла в двигателе

Проверка может быть нужна независимо от того, оборудован ли автомобиль стрелочным/цифровым индикатором или вывод данных о давлении на приборную панель конструктивно не предусмотрен.

Добавим, что все большее количество современных авто не имеет сегодня даже лампочки давления масла. Получается, нет возможности визуально проверить этот показатель и его изменения на разных режимах работы ДВС без дополнительных приспособлений.

Идем далее. Чтобы понять, какую отметку считаеть нормой для конкретного мотора, необходима таблица давления масла в двигателях того или иного производителя. Данную информацию можно найти в мануале, в специальной технической литературе по ремонту и эксплуатации, на профильных автофорумах и т.д.

Как уже было сказано, лампочка на панели может полностью отсутствовать. При этом даже ее наличие не позволяет точно определить нужный показатель. Не следует забывать о том, что также возможны сбои в работе самого индикатора (перегорание лампы, неисправности электрической проводки или датчика давления смазки).

Такие неисправности могут произойти в любой момент, при этом водитель лишается возможности контролировать давление в штатном режиме. Добавим, что для быстрой проверки лампы можно на незаведенном двигателе включить зажигание. Лампочка масла должна гореть. После запуска ДВС указанная лампа гаснет сразу или через 1-2 секунды. Если при включении зажигания лампа не загорается, тогда высока вероятность выхода элемента из строя.

Вернемся к проверке

Чтобы проверить давление масла, нужно иметь специальный манометр.
Обратите внимание, для точности замеров потребуется заранее прогреть двигатель до рабочей температуры.
Затем силовой агрегат нужно остановить. После этого следует обнаружить датчик давления масла на моторе.
Далее указанный датчик выкручивается, после чего подсоединяется переходник от манометра.
Затем можно запустить агрегат, после чего оценивается давление масла на холостом ходу.
Теперь нужно нажать на педаль газа, поднимая обороты до средних и высоких, параллельно фиксируя показания.

Для многих авто такой способ является оптимальным решением для замеров

Важно, чтобы измерительный прибор был исправным, также при анализе показаний все равно следует учитывать возможную погрешность

Также можно использовать цифровой измеритель (цифровой манометр с датчиком давления масла). Единственное, бюджетные приборы малоизвестных производителей отличаются большой погрешностью при измерениях. Это же утверждение справедливо и в том случае, когда автовладелец принимает решение установить дополнительный цифровой указатель давления масла в свой автомобиль.

Что касается самих показателей, они могут быть разными применительно к различным типам ДВС (дизель, бензин, производитель, объем, мощность, количество цилиндров, конструктивные особенности того или иного мотора). Например, давление масла в двигателе 2109 будет отличаться от аналогичного показателя на 16-клапанных моторах Лада Приора и т.д.

С учетом вышесказанного становится понятно, что нужные данные следует уточнять отдельно для каждого мотора. Если же говорить об усредненном показателе, при котором агрегат будет нормально работать, тогда:

  • в режиме холостых оборотов давление масла на прогретом двигателе (температура масла около 80 градусов) должно быть около 2 бар (или 0.2 МПа);
  • при повышении оборотов давление смазки должно расти, на высоких оборотах показатель должен составлять от 4.5 до 6.5 бар;
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: