Устройство трансмиссии

Easytronic AMT (Opel)

Автоматизированная коробка передач Easytronic имеет гибридный электрогидравлический привод для включения / выключения сцепления и два электрических привода для переключения передач (выбор и включение).

Где: 1 — сцепление (саморегулирующееся сцепление, SAC), 2 — рабочий
цилиндр сцепления (CSC), 3 — электродвигатель (постоянного тока) — управляет сцеплением, 4 — поршень (внутри цилиндра), 5 — механизм
переключения передач, 6 — электродвигатель (постоянного тока) — выбор передачи, 7 — электродвигатель (постоянного тока) — включение передачи

Когда положение сцепления контролируется электронным модулем управления, важно либо поддерживать постоянные механические параметры сцепления, либо адаптировать алгоритмы управления к износу сцепления. Фрикционный диск изнашивается в течение срока службы, что приводит к изменению хода сцепления (расстояние открытия / закрытия) (меньше для нового сцепления)

Для электронного модуля управления это рассматривается как нарушение процесса включения / выключения сцепления и может привести к неправильному срабатыванию. Есть два способа преодолеть это:

Фрикционный диск изнашивается в течение срока службы, что приводит к изменению хода сцепления (расстояние открытия / закрытия) (меньше для нового сцепления). Для электронного модуля управления это рассматривается как нарушение процесса включения / выключения сцепления и может привести к неправильному срабатыванию. Есть два способа преодолеть это:

  • механическая саморегуляция сцепления;
  • изучение хода сцепления и адаптация алгоритмов управления;

Сцепление (1) автоматически регулирует свой ход (расстояние открытия / закрытия) в зависимости от износа фрикционного диска. Оно называется саморегулирующимся сцеплением (SAC) и производится компанией LuK (Schaeffler).

Где: 1 — корпус привода со встроенным блоком управления трансмиссией (TCU), 2 — червячный редуктор, 3 — червячное колесо, 4 — электродвигатель постоянного тока (коллекторный), 5 — поршень, 6 — выпускная труба (в сторону CSC), 7 — входной патрубок (от резервуара), 8 — шатун.

Привод сцепления представляет собой смесь гидравлического и электрического привода. Когда необходимо выключить сцепление, электродвигатель (4) получает питание от блока управления трансмиссией. Ротор электродвигателя напрямую связан с червячным редуктором (2), который находится в постоянном зацеплении с червячным колесом (3).
Вращательное движение червячного колеса преобразуется в поступательное движение шатуна (8), который толкает поршень (5) и создает давление. Через выпускное отверстие (6) жидкость под давлением достигает рабочего цилиндра сцепления (CSC) и приводит в действие сцепление.

Гидравлический контур состоит из цилиндра и поршня со стороны привода и рабочего цилиндра сцепления с другой стороны. Сила срабатывания муфты прямо пропорциональна давлению жидкости в контуре.

Таким образом, положение муфты регулируется давлением жидкости в гидравлической системе, которое зависит от положения электродвигателя постоянного тока (DC).

Где: 1 — электрический разъем для электродвигателя включения передачи, 2 — электрический разъем для подключения электродвигателя выбора передачи, 3 — электродвигатель выбора передачи, 4 — стойка, 5 — палец включения передачи (для включения передачи), 6 — шестерня

Из нейтрального положения, если необходимо включить передачу, электродвигатель выбора передачи (3) перемещает рейку (4) вверх и вниз. Когда выбрана соответствующая плоскость шестерни (шибер), электродвигатель включения шестерни (1) будет вращать шестерню (6),
которая будет вращать палец включения шестерни (5). Скользящие втулки
синхронизаторов шестерен соединены вилкой и валом с пальцем включения шестерни (5). Когда палец включения шестерни (5) перемещается в одно из своих конечных положений, шестерня включается.

В электродвигатели встроены датчики положения. На основе информации о положении модуль управления трансмиссией регулирует электрическую мощность двигателей, чтобы привести их в необходимое положение.

Вариаторы изготавливают нескольких типов:

—         Клиноременные вариаторы (со шкивами переменного диаметра);

—         Цепные вариаторы;

—         Тороидальные вариаторы;

Рассмотрим работу и строение клиноременного вариатора

Два лежащих параллельно напротив друг друга цилиндра, стянутые резинкой. И вдруг эти механизмы начинают вращаться с одинаковой скоростью. В случае отличия диаметров цилиндров происходит изменение передаточного числа, так как один цилиндр совершает один поворот вокруг себя, а второй уже два поворота.

Строение вариатора очень похоже, практически одинаково, только диаметр применяемых цилиндров постоянно разный, что обеспечивает изменение передаточного числа вариатора при разгоне и замедлении. Вариатор состоит из двух шкивов похожих на конусы между которыми зажат клиновой ремень.

Плавное изменение передаточного отношения осуществляется за счет изменения радиуса изгиба ремня ведущего и ведомого диска.

Главное, чтобы конусы двигались друг к другу и обратно, тогда будет происходить произвольное изменение диаметров, и когда ремень будет соприкасаться с конусами своими ребрами, будет перемещаться в центр шкива и перекатываться по малому кругу конуса. А во время сближения конусов будет перекатываться по большому кругу. Теперь главное, чтобы был один ведущий вал, и один ведомый тогда можно легко обеспечить передачу передаточного отношения через шкив приводного вала. В качестве узла, который отвечает за регулирование направления вращения вала, выступает планетарная передача. В качестве ремня вариатора используется металлическая лента или широкая, прочная стальная цепь.

Для смазки цепи применяют специальную жидкость, с высоко стойкими свойствами, что обеспечивает хорошую контактность без проскальзывания и поддерживает качественную передачу крутящего момента.

Конструкция вариатора имеет ряд своих преимущества перед коробкой передач и другими передаточными устройствами:

— внушаемый набор скорости;

— хорошая экономия топлива;

— регулировка и оптимизация нагружения двигателя и приводов;

— меньший шум;

— меньше выброса вредных веществ отработавших газов.

К недостаткам конструкции вариатора можно отнести:

— Вариатор не устанавливается на автомобили с мощными двигателями;

— Для эксплуатации вариатора применяется специальная жидкость, которая является незаменяемой и требует четкого контроля. Еще одним недостатком является дороговизна жидкости.

— Дорогое обслуживание и ремонт;

— Мало СТО специализирующихся на вариаторах;

— Есть ограничения по буксировке автомобиля с вариатором.

— Зависимость рабочего режима вариатора от датчиков: скорости , АБС, давления и др.

Правильная эксплуатация автомобиля с вариатором:

— в зимний период давать прогреться всем элементам двигателя и трансмиссии;

— следить за уровнем специальной жидкости;

— Не допускать повышенных и резких нагрузок;

Полезные функции

Создание Electronic Clutch System помогло реализовать сразу несколько функций:

  • оптимизировать режим интенсивных троганий и остановок;
  • сделать плавным переключение передачи;
  • получить управляемое движение накатом;
  • расширило возможности системы Стоп-старт.

Оптимизация троганий и остановок

Наверняка самая важная составляющая – комфортное движение при частых троганиях и остановках. Такой режим встречается в городских «пробках», очередях на пропускных пунктах. Он дает возможность ехать на первой передаче, не используя педаль сцепления – если снять ногу с педали газа, система сама выключит сцепление. А если потом еще и притормозить, то двигатель не заглохнет, потому что уже не будет соединен с трансмиссией. Троганье же произойдет если отпустить педаль тормоза. Все точь-в-точь как в АКПП, но лишь на первой передаче.

Плавность наше все

Также обеспечивается плавное переключение (синхронизация) всех передач. Датчик засекает момент смены передачи и подает сигнал не только на eCS, но и в систему управления двигателем, которая повышает или понижает обороты, для достижения плавного переключения.

Управляемый накат

Две последних функции помогают экономить топливо. По оценкам разработчиков можно снизить его расход на 10 процентов. Управление движением накатом исключает торможение двигателем и помогает в полной мере использовать инерцию транспортного средства. Это особенно актуально во время движения под уклон. В натуре все происходит просто – во время снятия ноги с педали акселератора система eClutch отключает сцепление и машина продолжает двигаться накатом.

Улучшенный «Стоп-старт»

На авто, оснащенных опцией Стоп-старт, eClutch дает дополнительную экономию топлива. Так как убрав ногу с педали акселератора на первой передаче, вы не только отсоедините двигатель от трансмиссии, но и выключите его. То есть полная остановка автомобиля приходит с уже выключенным мотором. В итоге уменьшается время работы двигателя, и соответственно экономится горючее.

В реальной жизни

Вот такое очень современное и своевременно разработанное устройство. Так и хочется установить его на свой старенький автомобиль. Что, кстати, не утопия.

Например, система ЕКМ, которую производит фирма LuK может быть интегрирована в автомобиль, правда в заводских условиях. Еще более интересная разработка чешской фирмы «HURT», которая устанавливает электронный адаптер сцепления всем желающим. Кстати, не только в Чешской республике, но и в России и Украине, где имеет свои представительства.

Так что спешите поделится этой новостью с друзьями в соцсетях, и до следующей встречи на страницах нашего блога.

До свидания!

Как работает электронное сцепление

По описанию выше становится понятно, что электронное сцепление собой представляет не простую систему, и благодаря ему реализовано несколько функций для упрощения вождения автомобиля:

  • езда при частых остановках и стартах;

мягкое переключение передач;

управляемое движение накатом;

больше возможностей для системы Start/Stop двигателя.

Первая в списке и достаточно важная функция это движение при частых стартах и остановках. Чаще всего такое встречается в городских пробках, позволяет автомобилю передвижение на первой передаче без использования педали сцепления. Если же вы сняли ногу с педали акселератора, то система автоматически отключает сцепление. Если же вы дальше продолжаете притормаживать, то двигатель не заглохнет, так как уже будет отсоединен от трансмиссии.

Обратный процесс происходит, когда отпускаете педаль тормоза, система автоматически включает сцепление и первую передачу, в результате ощущение, что в автомобиле установлена автоматическая коробка передач. Такая функция реализована только для первой передачи, при этом стоит учесть, что первая передача будет длинной по оборотам, а не короткой как зачастую это в механической коробке передач.

Как уже говорили выше, вторым преимуществом электронного сцепления является плавное переключение передач. Специальный датчик высчитывает и определяет момент переключения передачи. На основе сигнала от этого датчика электронное сцепление с помощью системы управления двигателем уменьшает или увеличивает обороты агрегата. Благодаря такой работе и достигается плавное переключение передач.

Две последние функции, наведенные в списке выше, направлены на экономию топлива. Как заявляют производители экономия топлива достигает 10%. При движении накатом система автоматически отключает торможение двигателем. Тогда же автомобиль использует в полной мере движение по инерции. Другими словами если вы едите по склону, то система отключит трансмиссию автоматически и даст автомобилю ехать по инерции.

С технической стороны, данная функция реализована очень просто. Когда водитель снимает ногу с педали газа, система eClutch выключает сцепление и автомобиль движется по инерции.

Последняя функция это Start/Stop. Автомобили оборудованы этой функцией и электронным сцеплением позволят добавить еще экономии по топливу. При езде на первой передаче в пробках или при небольших склонах тратится больше топлива. В данном случае если при езде на первой передаче водитель убирает ногу с педали газа, система не только отсоединяет агрегат от трансмиссии, но и выключает сам двигатель. К полной остановке автомобиль придет с уже выключенным двигателем. Таким образом, увеличивается период не работы двигателя благодаря системе электронного сцепления. Как результат увеличивается и экономия топлива.

Видео принципа работы электронного сцепления:

Технические решения

Механическая коробка самый распространенный вид трансмиссии на легковых автомобилях в Европе. Именно поэтому производители постоянно ее совершенствуют и модернизируют. механикаОдна из таких прогрессивных разработок – электронное сцепление, которое вытеснило трос, гидравлику и вообще убрало механическую связь между приводом и педалью сцепления, заменив их электроникой. О нем сегодня и поговорим, в частности о принципе работы и очень полезных дополнительных функциях.

Electronic Clutch System или сокращенно eCS – перспективная разработка корпорации Bosch. По мнению производителя? eCS вплотную приблизило механическую КПП к коробке-автомату. Правда, в отличие от роботизированной КПП, в системе eClutch в автоматическом режиме работает лишь привод сцепления. Но и это нововведение существенно упростило управление МКПП, и дало возможность экономить топливо. Также такое сцепление дает возможность ставить механическую КП на гибридные машины.

С некоторым сожалением нужно отметить, что информации о eClutch не так уж и много. Коммерческая тайна, однако. Но как у всякой электронной системы там присутствуют: входные устройства, блок управления, исполнительный механизм. К первым можно отнести педаль сцепления и входные датчики. На данный момент известно лишь о двух из них, это: датчик положения педали газа и датчик положения рычага КПП. Понятно, что в натуре этих элементов больше.

Что касается блока управления, то его задача принимать и обрабатывать сигналы, поступающие со входных устройств, и управлять исполнительным механизмом и при этом взаимодействовать с системой управления двигателем. Исполнительный механизм представляет собой электрогидравлический актуатор (привод), который по команде блока управления перемещает вилку сцепления.

Электромагнитные сцепления позволяют автоматизировать управление сцеплением. На рисунке, в качестве при­мера приведена схема электромагнитного сцепления.

Нажимной диск 3 жестко связан с сердечником электромагнита 5.  Якорь электро­магнита 4 жестко соединен с кожу­хом 2 сцепления. При возбуждении обмотки сердечник 5 электромагнита притягивается к якорю 4 и зажимает ведомый диск 1 сцепления между ма­ховиком и нажимным диском. При размыкании тока сердечник оттяги­вается от якоря пластинчатыми пружинами. Сила, с которой ведомый диск зажимается между маховиком и нажимным диском, зависит от силы тока в обмотке электромагнита. В момент трогания автомобиля с места на первой передаче или на заднем ходу переключатель 8 (б), установленный на рычаге переключения коробки передач, выклю­чается.

Независимое питание обмотки возбуждения генератора 7 обеспечивается от аккумуляторной батареи. В процессе трогания автомобиля с места число оборотов двигателя, а следовательно, и генератора, постепенно увеличивается; соответственно возрастает сила тока, вырабатываемого генератором и поступающего в обмотки электромагнита сцепления 14, а значит и сила, зажимающая ведо­мый диск сцепления. Автомобиль плавно трогается с места.

Быстрота нарастания тока, а, следовательно, и плавность трога­ния с места зависят от величины сопротивлений R2 и Rз. Первое из них регулируется при наладке механизма, а второе может вклю­чаться или выключаться переключателем 9 водителем в зависимости от эксплуатационных условий трогания с места. При переключении передач на ходу автомобиля переключатель 8 включается, и ток от аккумуляторной батареи проходит не только через обмотку возбуждения генератора 7, но и через обмотку его якоря. При этом ток, поступающий в обмотки электромагнита сцепления 14, нарастает интенсивнее, и сцепление включается более резко.

В случае неисправности генератора с помощью переключателя 11 можно перейти на питание электромагнита сцепления 14 от акку­муляторной батареи. При больших углах открытия дроссельной заслонки контакты 12 замыкаются, сопротивление R1 выключается и сила, сжимающая ведомый диск, увеличивается. Сцепление выключается при автоматическом размыкании контактов 13 в соответствую­щих положениях рычага переключения коробки передач.

Контакты 10 управляются от реле обратного тока и обеспечивают возможности зарядки аккумуляторной батареи, когда напряжение генератора достигает достаточной величины. Одновременно генера­тор переходит на режим самовозбуждения.

При включении храповой муфты 6 (а) можно в случае разрядки аккумуляторной батареи пускать двигатель буксировкой автомобиля.

С износом фрикционных накладок ведомого диска сцепления уве­личивается воздушный зазор между якорем и сердечником электромагнита, а следовательно, увеличиваются и потери в магнитопроводе. Для нормальной работы сцепления необходимо регулировать электрические сопротивления в соответствии с износом накладок.

Мощность потребляемого электромагнитным сцеплением тока составляет 25—40 Вт. Ток даже при относительно малых числах оборотов идет от генератора и аккумуляторная батарея не разря­жается. Расчет электромагнитных сцеплений приводится в специаль­ной литературе.

Регулировка электромагнитного сцепления

Регулировка сцепления применяется главным образом для того, чтобы в эксплуатации иметь возможность поддерживать зазор в установленных пределах. Для этого обычно регулируют длину тяг привода от педали с проверкой зазора по свободному ходу педали.

В сцеплениях с центральной пружиной часто предусматривают, кроме того, регулировку силы нажатия пружины по размеру А с установлением этого размера регулировочными прокладками 5.

При сборке сцепления регулируют одновременность нажатия на все рычажки при соприкосновении с муфтой.

Расчет веса сцепления

Вес и простота конструкции фрикционного сцепления зависят в основном от числа ведомых дисков. Наибольшей простотой и наименьшим весом обладают однодисковые сцепления, которые и получили в настоящее время преимущественное распространение.

Вес сцепления ( с механизмом выключения, но без картера) составляет 0,3-0,6% от сухого веса шасси грузовых автомобилей. В случае применения двухдискового сцепления он повышается до 0.7%. В легковых автомобилях вес сцепления составляет 0,4-0,8% от их сухого веса.

Расчет сцепления автомобиля

Снижение ударной нагрузки в зубьях шестерен и муфт коробки передач при трогании с места и при переключении ступеней на ходу автомобиля, обеспечиваемое сцеплением, может быть определено при рассмотрении схемы.

Схема, поясняющая принцип работы фрикционного сцепления

Jm – момент инерции и ведущей части сцепления.

Ja – момент инерции условного маховика, эквивалентный поступательно движущейся массе автомобиля.

Jc – момент инерции ведомой части сцепления.

1,2 – шестерни постоянного зацепления.

3,4 – шестерни, подлежащие зацеплению на ходу автомобиля или при трогании с места.

Расчет момента инерции маховика

Момент инерции маховика Ja определяется из равенства кинетической энергии поступательно движущегося автомобиля и вращающегося маховика:

Сравним ударную загрузку, возникающую в зубьях соединяемых шестерен 3 и 4 без выключения сцепления и при его выключении.

Для определения ударной нагрузки, действующей на вторичный вал при переключении шестерен 3 и 4 без выключения сцепления, воспользуемся выражением:

Интегрируя это выражение  в предположении, что инерционный момент Mj=Pr3 действует в течении времени t, за которое угловая скорость вторичного вала повысится с Wa до W0, получим:

P – окружное усилие, действующее на зубья шестерен 3 и 4 в момент переключения.

r3 – радиус начальной окружности шестерни 3.

Аналогичное уравнение для промежуточного вала можно записать таким образом:

Где Wm – угловая скорость вращения коленчатого вала двигателя. Сила P и время t в обоих уравнениях одинаковы. Из этих двух выражений находим результирующую скорость вращения:

Подставляя W0 d первое уравнение, найдем импульс момента, возникающего при переключении шестерен без выключения сцепления:

Если шестерни переключать при предварительном выключении сцепления, то маховик будет отсоединен и, следовательно, в последнем уравнении Jm следует приравнять к нулю. Следовательно:

Так как момент инерции ведомой части сцепления Jc во много раз меньше момента инерции Jm, соотношением Jc/Jm  можно пренебречь. Тогда:

Следовательно, благодаря сцеплению в данном случае импульс момента снизился в 50 раз при переключении передач на ходу автомобиля, что вполне обеспечивает необходимый срок службы шестерен в эксплуатации. Снижение импульса момента будет тем большим, чем меньше момент инерции Jc ведомой части сцепления. В дисковых фрикционных сцеплениях момент инерции ведомой части получается меньше, чем в конусных. Это, в частности, привело к тому, что конусные сцепления в настоящее время не применяют. Момент инерции Jc в дисковых сцеплениях (при заданном передаваемом крутящем моменте) практически не зависит от числа ведомых дисков, так как с увеличением их числа обычно удается уменьшить наружный диаметр дисков и сохранить момент инерции ведомой части двухдискового и многодискового сцепления таким же, как у однодискового.

Автоматическая коробка передач с заземлителем ( в основном применяется на грузовых автомобилях, автобусах).

1 – гидротрансформатор с муфтой блокировки

2 – гидро замедлитель

3 – пяти ступенчатая планетарная передача

4 – гидронасос

5 – система управления КП

При выборе передачи учитывается частота вращения коленчатого вала двигателя, ведомого вала коробки передач. А водитель с своей стороны имеет право выбора в зависимости от условий эксплуатации автомобиля. Среди возможных программ можно выбрать езду с повышенной топливной экономичностью или максимальной скоростью.

Новые технологии внедрили в движение автомобиля интеллектуальные программы, которые оптимизируют управление автомобилем, создавая ряд дополнительных параметров, которые весьма важны в нашем случае. Среди них можно выделить продольное ускорение, поперечное ускорение, скорость движения, скорость перемещения педали тормоза, подачу топлива. Данная разработка дает возможность оптимизировать движения автомобиля как для езды в необходимых дорожных условиях, так и для езды в своем стиле.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector