Индуктивный генератор импульсов

Измерения наносекундных импульсов

Ниже приведены результаты измерения. Первое измерение показывает генерируемый импульс, измерение времени нарастания около 13,3 нс, ограниченной ширины полосы осциллографа (200 МГц), общая длительность импульса составляет около 2,5 нс. Генератор, измеренный на осциллографе с полосой пропускания 2 ГГц (10 GS), показал Tr = 280 pS и общую длительность импульса 1 нс.

Другим является измерение открытого коаксиального кабеля с коэффициентом укорочения 0,66 (коэффициент укорочения — это значение, если электромагнитная волна «работает» медленнее в данной среде по отношению к вакууму) кабель RG 178. Общее измеренное время составляет 17 нс, чтобы рассчитать время распространения, это значение должно быть разделено на 2 (время для достижения отражения и возврата сигнала), которое мы получаем, так что 8,5 нс, теперь этого достаточно, чтобы умножить на скорость света (точнее, электромагнитную волну) и по коэффициенту укорочения кабеля, то есть 0,66. После расчетов получаем результат длины кабеля, равный 1,67 м (фактическая длина кабеля составляет 1,7 м), поэтому ошибка измерения составляет около 2%.

Последнее измерение касается установки антенного кабеля. Аналогично здесь отражение в конце и волнистости в середине измерения. Рассчитанные расстояния представляют собой соответственно разъем на расстоянии 2,2 м и молниеотвод на расстоянии 5,5 м и, наконец, антенну на расстоянии 9,2 м (эти измерения также точны до 3%).

Если отражение выше оси, это означает что кабель разорван, то есть импеданс >50 Ом (относительно выходного импеданса генератора), если под осью — короткое замыкание или импеданс <50 Ом. Измерение действительно точное и показывает любые отклонения от сопротивления кабеля, включая влагу, повреждения, изгибы и так далее. Другой вариант схемы и платы есть в архиве.

Генератор релаксационных колебаний

На рис. 11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 1).

Устройства (рис. 11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

Рис. 11. Генератор релаксационных колебаний — схема.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи.

Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации.

В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА.

Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Схема фазовой автоподстройки частоты

Многие устройства используют схемы фазовой автоподстройки частоты (ФАПЧ) для сравнения фазы сигнала с выхода генератора с фазой частоты и регулировки частоты генератора таким образом, чтобы значения фаз совпали.

На рисунке приведена схема фазовой автоподстройки частоты (ФАПЧ). Устройство сравнения фаз (компаратор) имеет 2 входа и 1 выход. В качестве входных сигналов используется сигнал от задающего генератора (сигнал на входе схемы ФАПЧ) и сигнал с выхода генератора, управляемого напряжением (ГУН). Компаратор сравнивает фазы двух сигналов и формирует сигнал ошибки, который следует на фильтр нижних частот (ФНЧ), а с него – на ГУН, управляя его частотой.

Генераторы с конденсаторами РР2

Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем

Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации. Однако стоят они в магазине довольно дорого по сравнению с обычными типами

Однако стоят они в магазине довольно дорого по сравнению с обычными типами.

Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.

В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

RU167664U1
(ru)

*

2016-08-09 2017-01-10 Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Индуктивный генератор импульсов тока

RU2643665C1
(ru)

*

2017-04-06 2018-02-02 Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Индуктивно-импульсный генератор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

RU169475U1
(ru)

*

2016-11-15 2017-03-21 Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Индуктивно-импульсный генератор

RU2643665C1
(ru)

*

2017-04-06 2018-02-02 Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Индуктивно-импульсный генератор

RU2680343C1
(ru)

*

2017-11-02 2019-02-19 Олег Георгиевич Егоров Способ формирования наносекундных импульсов трансформаторными индуктивными накопителями энергии на нагрузке

Применение генераторов синхронизирующих сигналов в сетях SONET

Это тактовый генератор, используемый сетями поставщиков услуг часто в виде встроенного источника сигналов (BITS) для центрального офиса.

Цифровые коммутационные системы и некоторые системы передачи (например, системы синхронной цифровой иерархии SONET) зависят от надежной высококачественной синхронизации. Чтобы обеспечить такое состояние, большинство поставщиков услуг применяют схемы распределения сигналов синхронизации между офисами и реализуют концепцию BITS для обеспечения синхронизации внутри офиса.

На вход генератора тактовой частоты поступают входные сигналы синхронизации, а из выхода следуют выходные сигналы синхронизации. В качестве входных опорных сигналов могут выступать сигналы синхронизации DS-1 или CC (составные сигналы), выходными сигналами также могут быть сигналы DS-1 или CC.

Состав генератора:

  • входной интерфейс синхронизации, принимающий входные сигналы DS-1 или CC;
  • схема генерирования синхросигналов, которая создает синхросигналы, используемые схемой распределения выходной схемой распределения сигналов;
  • выходная схема распределения сигналов синхронизации, создающая множество сигналов DS-1 и CC;
  • схема контроля характеристик, предназначенная для контроля параметров синхронизации входных сигналов;
  • интерфейс аварийной сигнализации, подсоединенный к системе управления аварийной сигнализацией центрального офиса;
  • служебный интерфейс, предназначенный для использования местным обслуживающим персоналом и поддерживающий связь с удаленными служебными системами.

Оверклокинг

Особый интерес тактовый генератор процессора представляет для оверклокеров. К оверклокерам относят специалистов в области компьютерных технологий и просто любителей, стремящихся повысить производительность своей техники. В настоящее время оверклокинг доступен даже простым пользователям. Для изменения настроек компонентов компьютера иногда достаточно просто зайти в BIOS.

Прежде всего необходимо ответить на вопрос: за счет чего будет повышаться производительность? Здесь все очень просто. Производители компьютерных комплектующих для повышения надежности своих компонентов закладывают в них технологический запас. Именно этот запас и привлекает любителей выжать максимум из своего компьютера.

Одним из способов разгона компьютера будет замена кварцевого резонатора на кристалл, имеющий более высокую частоту. Или, например, можно убрать дополнительные элементы в виде делителей частоты из схемы генератора.

В современных компьютерах генераторы, как правило, реализуются на одной интегральной схеме. Значения тактовой частоты и множителя процессора, как уже было отмечено выше, можно изменить непосредственно из BIOS.

Начинающие оверклокеры нередко задаются вопросом, как определить модель тактового генератора. Программными средствами это сделать невозможно. Остается только открывать системный блок и искать генератор визуально.

С другой стороны, программным способом определяется модель материнской платы (AIDA64, Everest и другие). Затем для данной модели ищется подробная инструкция, а в ней вполне возможно будет найти информацию о названии генератора. А как узнать для тактового генератора значение тактовой частоты, установленное по умолчанию, и значение после разгона? Эти сведения также можно почерпнуть из инструкции для материнской платы.

Links

  • Espacenet
  • Discuss
  • 230000001939
    inductive effect
    Effects

    0.000

    title

    claims

    abstract

    description

    49

  • 238000004804
    winding
    Methods

    0.000

    claims

    abstract

    description

    92

  • 230000035939
    shock
    Effects

    0.000

    claims

    abstract

    description

    20

  • 241001124134
    Chrysomelidae
    Species

    0.000

    description

    5

  • 230000004907
    flux
    Effects

    0.000

    description

    3

  • 230000005291
    magnetic
    Effects

    0.000

    description

    3

  • 230000001808
    coupling
    Effects

    0.000

    description

    2

  • 238000010168
    coupling process
    Methods

    0.000

    description

    2

  • 238000005859
    coupling reactions
    Methods

    0.000

    description

    2

  • 238000010586
    diagrams
    Methods

    0.000

    description

    2

  • 230000005294
    ferromagnetic
    Effects

    0.000

    description

    2

  • 238000009825
    accumulation
    Methods

    0.000

    description

    1

  • 230000000903
    blocking
    Effects

    0.000

    description

    1

  • 238000004146
    energy storage
    Methods

    0.000

    description

    1

  • 238000005516
    engineering processes
    Methods

    0.000

    description

    1

  • 238000000034
    methods
    Methods

    0.000

    description

    1

  • 238000004157
    plasmatron
    Methods

    0.000

    description

    1

Зачем нужны ТТ

Подключение трехфазных счетчиков через трансформаторы тока Меркурий дает возможность расширить диапазон измеряемых параметров до нескольких сотен Ампер. Достичь этого удается за счет применения преобразующих устройств с фиксированным коэффициентом трансформации (чаще всего он равен 20-ти). Поскольку счетчики типа Меркурий рассчитаны на токи не более 60-ти Ампер – использование трансформатора позволяет снимать показания при их значениях в питающих цепях, достигающих многих сотен Ампер.

У других моделей ТТ коэффициент трансформации имеет «свои» значения (5, 30, 40 и т. д.).

Выбор конкретного образца преобразователя зависит от расчетного уровня токовой нагрузки в потребительской сети. Если значение тока не превышает 60-ти Ампер, что случается крайне редко, допускается прямое подсоединение счетчика в контролируемую цепь.

Использование мультивибраторов

Практические примеры использования мультивибратора приведены на рис. 4, 5.

Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.

На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.

Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.

На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-

щий экран).

Рис. 5. Генератор переменной частоты — схема.

Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).

Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.

Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Схема генератора импульсов нс

Основным препятствием для тестирования этих генераторов (их английское сокращение — TDR) обычно является отсутствие доступа или владения заводским измерительным прибором, ведь такое оборудование не является дешевым и доступным. Но сделав действительно небольшие затраты, можно самим построить такую измерительную систему. Так что для неё нужно? Разумеется, осциллограф, предпочтительно цифровой (хотя и не обязательно) с минимальной полосой пропускания 60 МГц (500 Мс -1 ГГц / с) и источником импульсов со временем нарастания не более 1 нс и длительностью 1-2 нс. Полагаем у каждого радиолюбителя есть такой осциллограф, поэтому остается вопрос: как сделать такой генератор импульсов?

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне 4 мс. Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

Описание устройства

Вся схема основана на двух блоках. Первый блок представляет собой DC-DC преобразователь и он построен с использованием микросхемы LT1073, второй блок представляет собой генератора на базе транзистора 2N2369A от Моторола. Инвертор объекта подает переменное напряжение, которое затем повышается в цепи умножителя диодного напряжения (диоды D1-D3) до значения 90 В. Затем с этим напряжением работает импульсная генераторная схема.

Микросхема LTC1073 используется для получения напряжения + 90 В. Если найти её проблема или купить слишком дорого — эта часть схемы может быть заменена другим преобразователем, например построенным на ne555 или mc34096a.

Схема питается через резистора 1MOM (R5), который подает напряжение непосредственно на транзистор и конденсатор 2PF (C2) — когда он заряжается до напряжения около 50 В (UCE для 2n2369 составляет около 40 В) вызывается краткий пробой перехода К-Э транзистора T1 и возникает импульс (явление лавинного пробоя).

Этот повторяется каждые 10 мкс

Теперь, обратите внимание на номинал транзистора — 2N2369A, не каждый транзистор тут будет работать, многие другие транзисторы просто не хотели функционировать

Выходное сопротивление точно настраивается на 50 Ом с помощью резистора эмиттера. Если кто-то хочет протестировать кабели с разными импедансами, надо подобрать значение резисторов R2, R3 для сопротивления кабеля (например, 75 Ом (2×150)).

Info

Publication number
RU162229U1

RU162229U1

RU2015132988/08U

RU2015132988U

RU162229U1

RU 162229 U1

RU162229 U1

RU 162229U1

RU 2015132988/08 U

RU2015132988/08 U

RU 2015132988/08U

RU 2015132988 U

RU2015132988 U

RU 2015132988U

RU 162229 U1

RU162229 U1

RU 162229U1

Authority
RU
Russia

Prior art keywords

winding
inductive
input terminal
pulse transformer
output terminal

Prior art date
2015-08-06

Application number
RU2015132988/08U
Other languages

English (en)

Inventor
Сергей Владимирович Пустынников
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2015-08-06
Filing date
2015-08-06
Publication date
2016-05-27

2015-08-06Application filed by Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
filed

Critical

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»

2015-08-06Priority to RU2015132988/08U
priority

Critical

patent/RU162229U1/ru

2016-05-27Application granted
granted

Critical

2016-05-27Publication of RU162229U1
publication

Critical

patent/RU162229U1/ru

Источник питания и корпус

Печатная плата генератора очень маленькая, на 42×18 мм. Сама схема может питаться напряжением от 1,5 до 3 В, в данном случае использовалась литиевая батарея CR2450. Весь генератор потребляет 5 мА и используя устройство в течение года, напряжение батареи остается на уровне 3 В. Конечно, если кто-то будет использовать его интенсивно, батарея быстро перестанет быстро обеспечивать требуемое напряжение.

Как видите на рисунках ниже, собранное устройство действительно мало и имеет общий размер 12x4x2,5 см. На рисунке показан модуль генератора, переключатель, светодиод, обозначающий включение источника питания и гнездо с батареей CR2450.

Управляемый генератор

Управляемый генератор прямоугольных импульсов показан на рис. 6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором.

Рис. 6. Управляемый генератор прямоугольных импульсов — схема.

Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 7, возрастает рабочая частота генерации.

Рис. 7. Как возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения.

Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов.

Для контроля работы, сигнал с генератора (рис. 6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 7). Отметим, что стабильность генераторов на RC-элементах невысока.

Links

  • Espacenet
  • Discuss
  • 230000001939
    inductive effect
    Effects

    0.000

    title

    claims

    abstract

    description

    53

  • 238000004804
    winding
    Methods

    0.000

    claims

    abstract

    description

    96

  • 230000035939
    shock
    Effects

    0.000

    claims

    abstract

    description

    20

  • 230000001808
    coupling
    Effects

    0.000

    description

    3

  • 238000010168
    coupling process
    Methods

    0.000

    description

    3

  • 238000005859
    coupling reaction
    Methods

    0.000

    description

    3

  • 230000005294
    ferromagnetic
    Effects

    0.000

    description

    3

  • 230000004907
    flux
    Effects

    0.000

    description

    3

  • 230000005291
    magnetic
    Effects

    0.000

    description

    3

  • 238000009825
    accumulation
    Methods

    0.000

    description

    2

  • 238000010586
    diagram
    Methods

    0.000

    description

    2

  • 210000004544
    DC2
    Anatomy

    0.000

    description

    1

  • 230000000694
    effects
    Effects

    0.000

    description

    1

  • 230000005674
    electromagnetic induction
    Effects

    0.000

    description

    1

  • 238000005516
    engineering process
    Methods

    0.000

    description

    1

  • 230000002530
    ischemic preconditioning
    Effects

    0.000

    description

    1

  • 238000000034
    method
    Methods

    0.000

    description

    1

  • 238000004157
    plasmatron
    Methods

    0.000

    description

    1

Общие принципы работы проекта

Генератор состоит из небольшого числа компонентов: платы Arduino Nano, ЖК дисплея, 3-х подтягивающих резисторов и 3-х кнопок.

В генераторе можно изменять период (частоту) повторения импульсов с помощью кнопок, подключенных к контактам 6 и 7 платы Arduino

С помощью кнопки, подключенной к контакту 13, можно изменять скважность импульсов. Длительность импульсов и скважность будут отображаться в первой строке ЖК дисплея, а частота – во второй строке ЖК дисплея

Минимальный шаг для настройки периода повторения импульсов составляет 1 мкс, поэтому частота импульсов будет изменяться также дискретно, например, периоду 1 мкс будет соответствовать частота 1 МГц, периоду 2 мкс – частота 500 кГц, периоду 3 мкс – частота 333.333 Гц и т.д. То есть по мере уменьшения частоты увеличивается плавность ее настройки. Конечно, это не очень практично для высоких частот, но это вынужденная плата за простоту устройства. Более продвинутый генератор можно собрать на основе использования DDS модуля, но это уже будет значительно более сложное устройство.

Для проверки работы генератора автор проекта использовал простой одноканальный осциллограф (который также можно собрать на основе платы Arduino). Для удобства работы с генератором он был помещен в небольшой корпус.

Как выглядят низкочастотные генераторы сигналов?

Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.

Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.

Самодельные приборы

Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.

В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.

Генераторы синусоидального сигнала

Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.

Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.

Низкочастотные генераторы сигналов

Такие конструкции применяются для настройки и тестирования аудиоаппаратуры

Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202

Сигнал в этом случае должен генерироваться через конденсаторы.

Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна


В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением


Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: