Устройство автомобилей

Виды впускных коллекторов

Существуют такие виды впускных коллекторов:

  • стальные;
  • алюминиевые;
  • пластиковые;
  • с изменяемой геометрией;
  • с клапанами контроля выхлопных газов (EGR);
  • с турбонаддувом;
  • с точечным впрыском топлива и др.


Принципиальная схема впускного коллектора с точечным впрыском топлива

Впускной коллектор, как и двигатель в целом, продуктивно работает в определенном диапазоне оборотов. Устройство и тип установленного коллектора зависит от компоновки блока цилиндров, от целевой направленности двигателя и от конструктивных решений в целом.

Все выше перечисленные коллекторы, делятся на две группы:

  • одноплоскостные;
  • двухплоскостные.

Одноплоскостной коллектор подает топливовоздушную смесь через один общий канал, многоплоскостной же изначально делит поток смеси на два потока.


Одноплоскостной коллектор

Как правило, двигатели с двухплоскостным коллектором выдают больше мощности на низких и средних оборотах в пределах 2000-4000 об/мин. На высоких же — из-за образующихся завихрений мощность будет несколько ниже.

Это интересно: Признаки загрязнения инжектора


Двухплоскостной коллектор

Коллектор с общей камерой без перегородок раскрывает свой потенциал на оборотах от 5000 и выше.

Конструкция

Такое функционирование системы впуска обеспечивается использованием электроники. А это значит, что все составные элементы ее делятся на три основных категории:

  1. Следящие устройства (датчики)
  2. Блок управления (ЭБУ, он же ЭСУД)
  3. Исполнительные механизмы

Первые контролируют ряд параметров и на основе их показаний ЭБУ подает сигналы на исполнительные устройства, благодаря чему и корректируется количество подаваемого воздуха.

Система впуска Audi RS4

Следящих устройств, используемых в конструкции впускной системы – достаточно много. Она включает в себя такие датчики как:

Система впуска Audi RS4

  • массового расхода воздуха или ДМРВ (расходомер);
  • температуры воздуха в коллекторе;
  • давления (атмосферного, в коллекторе);
  • положения заслонок;
  • положения клапана системы рециркуляции отработанных газов.

Это общий перечень следящих устройств, которые может включать система впуска. В определенных конструкциях моторов каких-то из них может и не быть. К примеру, на некоторых моторах ДМРВ не устанавливается, а его функцию выполняет датчик давления в коллекторе.

Основными из указанных следящих устройств являются ДМРВ и температурный датчик. Они подают на блок управления информацию о нагрузке на силовую установку. Остальные же датчики являются вспомогательными и обеспечивают информацией, на основе которой ЭБУ принимает более верные решения.

Датчик температуры воздуха в коллекторе

Поскольку впускная система, как и другие, управляется ЭБУ, то понятно, что она взаимодействует с рядом из них. Ее работа «переплетается» с системами:

  • впрыска;
  • рециркуляции отработанных газов;
  • улавливания топливных паров.

Также она взаимодействует с усилителем тормозной системы (вакуумным).

Элементы впускной системы

Конструкция исполнительного механизма включает в себя ряд элементов, указанных выше, а также некоторые другие. Он включает в себя:

  • заборник;
  • фильтрующий элемент;
  • дроссельный узел;
  • коллектор;
  • соединительные трубопроводы;
  • резонатор.

В инжекторных системах с прямым впрыском исполнительный механизм включает в себя также впускные заслонки.

Коллектор в системе прямого впрыска автомобилей VW

Характерные неисправности системы впуска

Самый большой враг системы впуска — грязь. Она может попадать даже в воздуховоды, защищенные высококачественными воздушными фильтрами. Фильтр сделан из хлопчатобумажной ткани, и его необходимо менять по мере загрязнения или по регламенту. Тем не менее, мельчайшие частицы грязи способны просочиться даже через самый лучший и новый фильтр. Попадая внутрь системы, пыль способствует образованию налета, затрудняющего работу механических частей, в первую очередь, дроссельной заслонки. Кроме того, пыль оседает на чувствительном элементе ДМРВ, нарушая его показания.

Система EGR прекрасно защищает окружающую среду, но может стать безжалостным убийцей для системы впуска

Не менее губительны для работы системы впрыска нарушения в работе системы EGR, то есть рециркуляции отработавших газов. Система, созданная для защиты окружающей среды, нередко становится «убийцей» системы впрыска. В случае попадания масла из неисправной EGR во впускной коллектор, оно смешивается с пылью и попадает в камеру сгорания, покрывая все слоем налета и нагара. Поэтому к исправности двигателя, оснащенного системой рециркуляции, предъявляются повышенные требования.

Система впуска автомобиля

Двигатели автомобиля постоянно совершенствуются, что в свою очередь приводит не только к осложнению конструкции узлов и механизмов, но и появлению новых систем. Таковой, к примеру, является система впуска, которая появилась с широким внедрением электроники в конструкции силовых установок.

На карбюраторных моторах впускная система отсутствовала как таковая, хотя ее некоторые составные части использовались – воздухозаборник, фильтрующий воздушный элемент, коллектор. В их задачу входила подача воздуха в двигатель, а после прохождения воздушного потока через карбюратор – топливовоздушной смеси в цилиндры. С появлением инжекторов с электронным управлением, конструкция элементов, обеспечивающих наполнение воздухом камер сгорания, усложнилась, добавились новые, в результате образовалась полноценная система впуска.

Система продолжает выполнять все ту же задачу – наполнение цилиндров воздухом. Но за счет использования электронного управления, удается обеспечить заполнение цилиндров оптимальным количеством воздуха в любых режимах работы мотора. Это позволяет поддерживать требуемые пропорции топливовоздушной смеси для получения максимального выхода мощности при минимально возможном расходе топлива. Оптимальная пропорция для смеси является 14,7 частей воздуха на 1 часть топлива. Именно этот состав и старается поддерживать впускная система практически на любом режиме работы мотора.

Разделы руководства

Кузов и покрытиеБезопасность пассажиров
Геометрия кузова
Двери
Детали салона
Защита от коррозии
Кузовной ремонт
Люк крыши
Наружные детали
Сиденья
Стекла

Общая информацияИдентификационные коды
Использование мануала
Материалы
Меры предосторожности
Моменты затяжки
Технические приемы
Технические характеристики
Техобслуживание

Силовой агрегатДвигатель TD6
Двигатель V8
Коробка-автомат GM-5L40-E
Коробка-автомат ZF 5HP24
Охлаждение двигателя TD6
Охлаждение двигателя V8
Раздаточная коробка
Система выпуска TD6
Система выпуска V8
Снижение выбросов TD6
Снижение выбросов V8
Топливоподача двигателя TD6
Топливоподача двигателя V8
Управление двигателем TD6
Управление двигателем V8

ШассиГлавная передача
Задняя подвеска
Передача переднего моста
Передняя подвеска
Приводные валы
Рулевое управление
Тормозная система

ЭлектрооборудованиеЖгуты электропроводки
Кондиционирование
Освещение
Отопление и вентиляция
Развлекательная система
Система пуска и зарядки
Стеклоочистители
Электронные блоки

Конструкция

Такое функционирование системы впуска обеспечивается использованием электроники. А это значит, что все составные элементы ее делятся на три основных категории:

  1. Следящие устройства (датчики)
  2. Блок управления (ЭБУ, он же ЭСУД)
  3. Исполнительные механизмы

Первые контролируют ряд параметров и на основе их показаний ЭБУ подает сигналы на исполнительные устройства, благодаря чему и корректируется количество подаваемого воздуха.

Система впуска Audi RS4

Следящих устройств, используемых в конструкции впускной системы – достаточно много. Она включает в себя такие датчики как:

Система впуска Audi RS4

  • массового расхода воздуха или ДМРВ (расходомер);
  • температуры воздуха в коллекторе;
  • давления (атмосферного, в коллекторе);
  • положения заслонок;
  • положения клапана системы рециркуляции отработанных газов.

Это общий перечень следящих устройств, которые может включать система впуска. В определенных конструкциях моторов каких-то из них может и не быть. К примеру, на некоторых моторах ДМРВ не устанавливается, а его функцию выполняет датчик давления в коллекторе.

Основными из указанных следящих устройств являются ДМРВ и температурный датчик. Они подают на блок управления информацию о нагрузке на силовую установку. Остальные же датчики являются вспомогательными и обеспечивают информацией, на основе которой ЭБУ принимает более верные решения.

Датчик температуры воздуха в коллекторе

Поскольку впускная система, как и другие, управляется ЭБУ, то понятно, что она взаимодействует с рядом из них. Ее работа «переплетается» с системами:

  • впрыска;
  • рециркуляции отработанных газов;
  • улавливания топливных паров.

Также она взаимодействует с усилителем тормозной системы (вакуумным).

Элементы впускной системы

Конструкция исполнительного механизма включает в себя ряд элементов, указанных выше, а также некоторые другие. Он включает в себя:

  • заборник;
  • фильтрующий элемент;
  • дроссельный узел;
  • коллектор;
  • соединительные трубопроводы;
  • резонатор.

В инжекторных системах с прямым впрыском исполнительный механизм включает в себя также впускные заслонки.

Коллектор в системе прямого впрыска автомобилей VW

Конструкция системы выпуска

Основной задачей системы выпуска является эффективный отвод отработавших газов из цилиндров двигателя, снижение их токсичности и уровня шума. Зная, из чего состоит выхлопная система в автомобиле, вы сможете лучше понимать принципы ее работы и причины возможных неполадок. Устройство стандартной выхлопной системы зависит от вида используемого топлива, а также от применяемых экологических стандартов. Выхлопная система может состоять из следующих элементов:

  • Выпускной коллектор — выполняет функцию отвода газов и охлаждения (продувки) цилиндров двигателя. Он выполняется из термостойких материалов, поскольку температура выхлопных газов в среднем варьируется от 700°С до 1000°С.
  • Приемная труба — представляет собой трубу сложной формы с фланцами для крепления к коллектору или турбонагнетателю.
  • Каталитический нейтрализатор (устанавливается в бензиновых двигателях экологического стандарта Евро-2 и выше) — устраняет из отработавших газов наиболее вредные компоненты CH, NOx, СО, преобразуя их в водяной пар, углекислый газ и азот.
  • Пламегаситель — устанавливается в системах выпуска отработавших газов автомобилей вместо катализатора или сажевого фильтра (в качестве бюджетной замены). Он предназначен для снижения энергии и температуры потока газов, выходящих из выпускного коллектора. В отличие от катализатора, не снижает количество токсичных компонентов в отработавших газах, а лишь снижает нагрузку на глушители.
  • Лямбда-зонд — служит для контроля уровня кислорода в составе отработавших газов. В системе может быть один или два кислородных датчика. На современных двигателях (рядных) с катализатором устанавливается 2 датчика.
  • Сажевый фильтр (обязательная часть системы выхлопа дизельного двигателя) — удаляет сажу из выхлопных газов. Может совмещать в себе функции катализатора.
  • Резонатор (предварительный глушитель) и основной глушитель — снижают уровень шума выхлопных газов.
  • Трубопроводы — соединяют отдельные элементы выхлопной автомобильной системы в единую систему.

Тюнинг впускного коллектора

Некоторые автовладельцы хотят превратить свою машину в гоночный болид, для этого увеличивают объем двигателя, устанавливают 2–3 карбюратора, перепрошивают инжектор, устанавливают спортивный распредвал и коленчатый вал.

В результате им удается поднять мощность двигателя на 30–80 процентов, и настолько же их мотор теряет в ресурсе. Для участия в гонках внутреннюю поверхность впускного коллектора максимально сглаживают и полируют, чтобы снизить аэродинамическое сопротивление. Но эффект такой тюнинг выхлопной системы дает лишь на высоких оборотах и как минимум половинной мощности двигателя. На низких и средних оборотах полированный впускной коллектор работает крайне неэффективно. Отсутствие мелких неровностей приводит к тому, что в потоке не образуются турбулентности и завихрения, это негативно сказывается на качестве топливовоздушной смеси. Поэтому топливо оседает на стенках коллектора и приводит к образованию наростов.

Если вы хотите оптимизировать впускной коллектор своего автомобиля, учитывайте следующее. Автопроизводители тщательно рассчитывают форму и размеры впускных и выпускных коллекторов, чтобы обеспечить максимальное соответствие конкретной модели двигателя. Если вы используете нормальную заводскую деталь, у которой нет ступенек, то любой тюнинг впускного коллектора лишь ухудшит характеристики двигателя. Поэтому почистите коллектор от наростов, устраните ступеньки, отремонтируйте и настройте двигатель. Это даст гораздо больший результат, чем любые улучшения. Если же вам необходимо поднять мощность автомобиля, установите новый мотор с увеличенным количеством лошадиных сил.

Источник

Завести машину, если сел аккумулятор, «с толкача»

Хорошо известен способ пуска двигателя при помощи сторонней физической силы, называемый в народе «с толкача». Его плюс очевиден – завести машину в момент ее буксировки можно в кратчайшие сроки, тогда как при прикуривании придется ожидать не менее 20 минут, пока аккумулятор зарядится для стопроцентного пуска двигателя. Однако имеются у метода пуска двигателя с толкача и минусы:

  • Необходимо отыскать несколько здоровых парней, которые будут готовы подтолкнуть ваш автомобиль, или машину, готовую выступить в качестве буксира;
  • Следует обладать знанием алгоритма действий, которые позволят завести двигатель с толкача;
  • Подобным образом можно завести только автомобиль на механической коробке передач.

Имеется мнение, что машину с автоматической коробкой передач можно завести с толкача при большом желании. Для этого ее необходимо разогнать до скорости в 40-50 километров в час, после чего пробовать завести двигатель. Инструкция по эксплуатации любого автомобиля с автоматической коробкой передач запрещает пуск его двигателя «с толкача» отмечая, что подобные попытки могут привести к неисправности не только батареи, но и всей трансмиссии.

Выяснив, что запускать с толкача можно только автомобиль с ручной коробкой передач, предлагаем рассмотреть алгоритм действий, которые должен выполнить водитель машины, чтобы завести двигатель при помощи сторонней физической силы:

  1. Необходимо установить рычаг коробки передач в нейтральное положение и завести машину;
  2. После этого водитель должен отдать команду помощникам, чтобы они толкали автомобиль;
  3. В этот момент необходимо полностью выжать сцепление на автомобиле и включить вторую передачу, не отжимая сцепления;
  4. Когда автомобиль разгонится до 10-15 километров в час, необходимо плавно начать отжимать сцепление, при этом слегка нажимая на газ;
  5. Если все выполнено верно, то движок заработает – можно останавливать автомобиль и благодарить помощников, главное чтобы машина не заглохла.

Если аккумулятор в автомобиле не самый «убитый», то через 20-30 минут двигатель можно будет смело глушить и после стараться запустить его без посторонней помощи. За указанное время генератор сможет немного подзарядить даже полностью разряженный аккумулятор.

Как защитить ДВС от детонации

Защитить двигатель внутреннего сгорания от детонации можно при недопущении вышеперечисленных причин. При обнаружении первых признаков детонации следует принять меры по их устранению.

  1. Устанавливать рекомендованные свечи зажигания для конкретного мотора.
  2. Заливать соответствующее для автомобиля топливо. Например, по рекомендации завода-изготовителя машины рекомендованным для заправки требуется только бензин с октановым числом 95, но, если заливать 92-й бензин, то может появиться детонация ДВС, потому что компрессии требуется поменьше и воспламеняется быстрее.
  3. Своевременно менять фильтры, по мере их загрязнения.
  4. Не перегревать мотор.
  5. Следить за исправностью датчиков и сигналами бортового компьютера.

Устройство и принцип работы

Чтобы впускной коллектор выполнял все возложенные на него задачи, он должен иметь строго рассчитанную геометрическую форму. Например, для того, чтобы поток внутри не замедлялся, коллектор проектируется без углов и прямых линий. Плавные изгибы, округлая форма способствуют более мощному воздушному потоку.


Устройство впускного коллектора

На входе во впускной коллектор находится карбюратор или дроссельная заслонка, если речь идет об инжекторном двигателе. Центральный канал разделяется на отдельные рукава – раннеры, которые подходят к цилиндрам, а точнее, к впускным клапанам.

Топливные форсунки размещаются возле впускных клапанов (в системе распределенного впрыска) или в центральном канале, если установлен моновпрыск.

По форме впускного канала различают одноплоскостные и двухплоскостные:

  1. Одноплоскостные – только с одним каналом для прохождения воздуха или топливно-воздушной смеси. Эти коллекторы пропускают за единицу времени большое количество воздуха, а значит, позволяют двигателю развить максимально возможную мощность на высоких оборотах;
  2. Двухплоскостные – те, в которых канал разделен на две части. Они дают возможность получить больше отдачи мощности на низких и средних оборотах двигателя.

Материалы.
Изначально впускные коллекторы делались металлическими: из чугуна, стали, алюминия. Проблема таких конструкций не только в достаточно высокой цене, но и в значительном нагреве от цилиндров двигателя. Сегодня их в основном делают из специального термостойкого пластика, который обладает меньшей теплопроводностью, а значит, и меньше нагревает воздух внутри.

Принцип работы.
Основной принцип работы коллектора – подача воздуха на фазе впуска. Инициатором движения воздуха  является сам двигатель. Когда поршень опускается, в камере сгорания над ним создается зона низкого давления. На фазе впуска, когда клапан открыт, опускающийся поршень затягивает воздух, как хороший насос. Таким образом, от центрального канала воздух поступает в нужный раннер, а из него – в камеру сгорания. На видео-3д анимации, ниже, наглядно показан принцип работы впускного коллектора с вихревыми клапанами.

Если на автомобиле установлен карбюратор или центральная форсунка, при втягивании воздуха в раннер, поток топлива (или топливно-воздушной смеси) поступает в нужный цилиндр. Благодаря тому, что поток внутри коллектора турбулентный, топливо лучше перемешивается с воздухом и, следовательно, лучше сгорает. Турбулентный воздушный поток проектируется в коллекторе специально: он быстрее движется и лучше наполняет цилиндры.

В автомобилях с распределенным впрыском форсунки установлены в раннерах коллектора перед впускными клапанами. В этом случае по коллектору движется только воздух, который смешивается с распыленным топливом перед самым входом в цилиндр двигателя. Здесь скорость и структура воздушного потока также важны, поскольку для качественного приготовления топливно-воздушной смеси остается меньше времени и места.

Резонансные колебания.
Чтобы усилить поток поступающего воздуха, внутренняя геометрия впускного коллектора рассчитывается так, чтобы образовался так называемый резонанс Гельмгольца. Примерная схема, как это работает:

  1. На фазе всасывания поршень мотора опускается вниз, создавая зону разрежения, и через открывшийся клапан в камеру сгорания на большой скорости заходит воздух;
  2. Однако объем раннера намного больше, чем объем цилиндра, поэтому весь воздух, который “взял разгон” в коллекторе, в камеру сгорания не попадает;
  3. Перед закрывшимся впускным клапаном создается зона повышенного давления, когда воздух по инерции продолжает движение вперед;
  4. Клапан всё еще закрыт, так что давление в раннере выравнивается, то есть происходит “откат”, а после него перед впускным клапаном опять образуется зона повышенного давления. Эти резонансные колебания воздуха зависят от формы и размера коллектора и рассчитываются под каждый двигатель отдельно.

Электростартер

Электрический автомобильный стартер.Реле стартера (вверху слева, чёрного цвета). Тяговое реле (соленоид, в центре вверху, малого диаметра, золотистого цвета). В серебристом корпусе — рычажная передача и обгонная муфта. Электродвигатель — большого диаметра, золотистого цвета.

Наиболее удобный способ. При запуске двигатель раскручивается коллекторным электродвигателем — машиной постоянного тока, питающейся от аккумуляторной батареи (после запуска аккумулятор подзаряжается от генератора, приводимого в движение основным двигателем). При низких температурах обычно применяемые кислотные аккумуляторы теряют ёмкость (главным образом — из-за роста вязкости электролита; также происходит снижение электродвижущей силы батареи), а вязкость масла в системе смазки увеличивается. Поэтому запуск двигателя зимой затруднён, а иногда и невозможен. При наличии электрической сети в этом случае возможен запуск от сетевого пускового устройства (практически неограниченной мощности).

Электродвигатели автомобильных стартёров имеют особую конструкцию с четырьмя щётками, которая позволяет увеличить ток ротора и мощность электродвигателя.

На тепловозах с электрической передачей постоянного тока стартером является тяговый генератор. Эта же схема применялась на некоторых мотороллерах («Тула», «Турист», «Тулица», «Муравей»), где функцию стартера выполняет генератор постоянного тока, насаженный непосредственно на коленвал (в СССР такая система называлась «динамо-стартер», а позже — «династартер»)

Принцип работы электростартера

При включении стартера электрический ток (через реле включения, иначе сгорят контакты в замке зажигания) поступает на тяговое реле (соленоид). Сердечник соленоида втягивается и через рычажную передачу вводит в зацепление шестерню электродвигателя стартера с зубчатым венцом (большая шестерня) маховика. После этого замыкаются контакты реле стартера. Через это реле проходит очень большой ток (десятки и даже сотни ампер) на электродвигатель. После запуска муфта свободного хода (бендикс) позволяет вращаться независимо друг от друга маховику двигателя и электродвигателю стартера. После выключения стартера детали стартера возвращаются в исходное состояние. На старых автомобилях (например, ГАЗ-69, ГАЗ-63) тяговое реле (соленоид) отсутствовало, водитель включал стартер педалью на полу кабины.

На автомобилях с автоматическими трансмиссиями имеется удерживающая обмотка, не позволяющая сердечнику соленоида перемещаться, если селектор АКПП установлен на ходовых позициях «D», «R», «L» или «2», в автоматической коробке передач установлен выключатель, подающий ток в удерживающую обмотку. Запуск двигателя возможен только на позициях «P» (парковка) и «N» (нейтраль).

Величина электрического напряжения на стартере

На автомобилях с бензиновыми двигателями внутреннего сгорания напряжение бортовой сети составляет 12 вольт, применяется такое же электрическое напряжение на стартере. На ряде автомобилей, выпускавшихся в первой половине XX века, использовалось напряжение 6 вольт.

На автомобилях с мощными дизельными двигателями напряжение бортовой сети составляет 24 вольта. Это обусловлено тем, что дизелю с большим рабочим объёмом и с большой степенью сжатия требуется мощный электрический стартер. Устанавливаются по два 12-вольтовых автомобильных аккумулятора, соединённые последовательно.

При равной электрической мощности при повышении электрического напряжения в два раза сила тока соответственно снижается в два раза: P=I⋅U{\displaystyle P=I\cdot U}, где I{\displaystyle I} — сила тока, а U{\displaystyle U} — напряжение.

Повышение напряжения позволяет уменьшить разрядный ток аккумуляторной батареи, а также снизить бесполезный нагрев проводов.

На легковых автомобилях, микроавтобусах и малотоннажных грузовиках с дизельными двигателями применяются 12-вольтовые стартеры (этого вполне достаточно).

На старых грузовиках с дизелями (ЯАЗ-200, ЯАЗ-210) напряжение бортовой сети составляло 12 вольт, а стартеры были рассчитаны на 24 вольта. Стояло два 12-вольтовых автомобильных аккумулятора, соединённые параллельно, при запуске они переключались на последовательное соединение. Все 12-вольтовые потребители электроэнергии при запуске работали от одной аккумуляторной батареи.

Выпускная и впускная система в автомобиле — все что нужно знать

Системы впуска и выпуска служат для подвода свежего заряда (воздуха или горючей смеси) к цилиндрам двигателя и отвода из них выпускных газов. В двигателях с внешним смесеобразованием во впускной системе также происходит смесеобразование, так как процесс испарения жидкого топлива и смешения его паров с воздухом или смешения горючего газа с воздухом не успевает завершиться в карбюраторе или газовом смесителе.

Общим требованием, предъявляемым к системам впуска и выпуска, является по возможности их малое сопротивление и благоприятное протекание газодинамических явлений в них, что необходимо для уменьшения насосных потерь и увеличения наполнения цилиндра, а также более полного использования энергии выпускных газов в газовой турбине.

Впускная система состоит из воздухозаборников с фильтрами и глушителями шума, компрессоров для сжатия воздуха, охладителей воздуха, впускного трубопровода, или ресивера, и впускных органов.

Рекламные предложения на основе ваших интересов:

Компоновка и размеры трубопроводов зависят от типа, назначения и мощности двигателя внутреннего сгорания. Впускной трубопровод двигателя с внешним смесеобразованием делают литым из легких сплавов (обычно алюминиевых). На рис. 85 показан впускной трубопровод автомобильного двигателя. Сечение патрубков выбирают таким, чтобы сохранялась определенная скорость потока. Для улучшения испарения жидкого топлива смесь подогревают горячей водой, циркулирующей в полости. Если впускной и выпускной трубопроводы расположены с одной стороны двигателя, то подогрев смеси осуществляется от выпускного трубопровода. Для этого трубопроводы располагают по возможности ближе один к другому. Впускные трубопроводы дизелей выполняют аналогичным образом, только в этом случае не нужно подогревать воздух. В V-образных двигателях впускной трубопровод часто размещают в развале блока.

Неисправности впускного коллектора

Общие проблемы с впускным коллектором включают в себя:

  • подсос воздуха;
  • утечки охлаждающей жидкости или масла;
  • снижение потока из-за накопления углерода;
  • проблемы с впускными регулирующими заслонками.

В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.

Утечки охлаждающей жидкости

В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.

Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.

Подсос воздуха

Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.

Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:

Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.

Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.

Отложения углерода

В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.

Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.

В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.

Проблемы с заслонками изменения геометрии впуска

Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.

Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.

Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.

Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.

Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.

Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector