Как устроен ручник
Конструкция стояночного тормоза состоит из трёх компонентов:
- Собственно, тормозной механизм, который взаимодействует с колёсами или двигателем;
- Приводной механизм, который приводит в действие тормозной механизм (рычаг, кнопка, педаль);
- Тросы или гидравлические магистрали.
В системе ручника, как правило, используется один или три троса, трёхтросовый вариант наиболее популярен и надёжен. В системе два троса задних, один передний. При этом два троса задних идут к тормозному механизму, передний взаимодействует с рычагом.
Скрепление или соединение тросов осуществляется с элементами ручника с помощью специальных регулируемых наконечников. В свою очередь на тросах имеются регулировочные гайки, с помощью которых можно изменять длину самого троса. Также в системе есть возвратная пружина, которая возвращает механизм в изначальное положение после того, как ручной тормоз снят. Возвратную пружину устанавливают либо на самом тормозном механизме, на уравнителе или на тросе, связанном с рычагом.
Особенности обкаточно-тормозных моделей
После ремонтных мероприятий система ДВС и тормозные агрегаты должны проходить период испытаний. Это своего рода обкатка с реальной нагрузкой в естественных условиях. Поскольку не всегда удается проводить подобные тесты на дороге, для них используют обкаточно-тормозной стенд, обеспечивающий оптимальную приработку деталей и узлов. В состав оборудования входит привод, нагрузочное устройство и асинхронный электродвигатель. В процессе обкатки, кроме функции тормоза, оцениваются показатели расхода топлива, стабильность снабжения агрегатов технической жидкостью, давление в системе смазки и т.д. После завершения рабочего сеанса формируется протокол с зафиксированными эксплуатационными показателями.
Классификация тормозных систем автомобиля по типу привода, устройство
Один человек, даже очень сильный, не может приложить достаточное усилие на тормоза, чтобы остановить машину. Для умножения и передачи усилия используется привод тормозной системы. Типы приводов бывают разные:
Механический
Типичный пример – стояночный тормоз, у которого в качестве привода трос и рычаги. Этой системе столько лет, сколько самому автомобилю, но ничего более простого и безотказного пока что инженеры не придумали.
Гидравлический
Тормоза с гидравликой есть у любого легкового автомобиля, это самая привычная нам система. Можно сказать, гидравлика сочетает в себе эффективность и доступность: работает отлично, обслуживать достаточно легко, комплектующие есть в любом магазине автотоваров. Гидравлические тормоза делятся по типу тормозных элементов на дисковые и барабанные.
-
Дисковый тормоз.
Эффективно? Да. Надежно? Да. Дисковые тормоза в свое время стали фурором в автоспорте, а затем и в повседневной жизни. По эффективности она сразу же превзошли привычные тогда тормозные барабаны.Принцип работы дискового тормоза знает любой водитель: фрикционные накладки расположены по обе стороны стального диска, который надет на ступицу колеса и вращается вместе с ней. Нажатие на педаль тормоза приводит в действие привод, накладки зажимают диск и останавливают его, а вместе с ним и автомобиль.
-
Барабанный тормоз.
В отличие от дискового тормоза, в барабанном фрикционные накладки располагаются внутри тормозного барабана. При нажатии педали привод раздвигает колодки, и они прижимаются к внутренним стенкам.По эффективности барабанные тормоза стоят далеко позади дисковых, и в прямом, и в переносном смысле. Поскольку для остановки автомобиля торможение передних колес важнее, чем задних, то барабанные тормоза иногда ставят на задние колеса в недорогих моделях автомобилей.
Пневматический
Пневматика в качестве привода тормозной системы не используется в легковых автомобилях, ее ставят на тяжелую коммерческую технику. Принцип действия немного похож на гидравлический, но рабочей средой является не жидкость, а сжатый воздух, который накачивается в систему компрессором. Когда водитель нажимает педаль тормоза, воздух под давлением проходит к тормозным элементам и приводит их в действие.
Комбинированный
Комбинированную тормозную систему можно встретить на тяжелой спецтехнике. Он состоит из различных типов привода, что дает громоздкий, но надежный результат. Электромеханический или гидромеханический привод нужны для тяжелого транспорта в тяжелых условиях.
Гидравлический привод тормозов
Гидравлические приводы тормозных механизмов появились несколько позже, чем механические приводы, примерно в 1910 – 1915 г.г. В массовом автомобилестроении гидравлический привод тормозов применяется с 1924 года благодаря разработкам инженеров американской автомобилестроительной компании «Крайслер» (Chrysler Group LLC). В своей работе такие приводы используют гидростатические законы, передавая энергию жидкости под давлением. Принцип действия гидростатического привода основан на свойстве жидкости сохранять свой объем при внешнем давлении (ничтожно малая сжимаемость), а также способности передавать создаваемое в любой точке давление одинаково всем точкам замкнутого объема жидкости (закон Паскаля).
Гидравлический привод широко применяется в качестве привода рабочей тормозной системы легковых автомобилей, грузовых автомобилей малой и средней грузоподъемности, а также автобусов малой вместимости.
***
Достоинства и недостатки гидропривода тормозов
Гидравлический привод тормозных механизмов имеет ряд существенных преимуществ перед другими типами привода:
- одновременность торможения всех колес (в принципе) и требуемое распределение тормозных сил между отдельными колесами (дифференцирование тормозных усилий);
- высокий КПД – 0,9 и выше при нормальной температуре охлаждающей жидкости (для сравнения – КПД механического привода редко превышает 0,6);
- малое время срабатывания (0,05…0,2 сек). Благодаря этому свойству, обусловленному ничтожно малой сжимаемостью жидкости, гидравлический привод имеет неоспоримое преимущество перед пневматическим приводом, имеющим время срабатывания примерно в десять раз больше;
- относительно малые габариты и масса применяемых в гидроприводе приборов и устройств;
- простота конструкции и удобство компоновки (трубки гидропривода можно проложить как угодно и где угодно в кузове или других элементах конструкции автомобиля – на работоспособность привода это не повлияет).
Не лишены гидравлические приводы тормозов и некоторых существенных недостатков:
- невозможность получения большого передаточного числа привода. Как известно, передаточное число гидростатических систем можно установить соотношением площадей поперечного сечения поршней передающего и принимающего усилие гидроцилиндров (или заменяющих их элементов). Очевидно, что существенное увеличение передаточного числа привода для повышения тормозного усилия приводит к значительному увеличению хода управляющего органа (тормозной педали или рычага);
- выход из строя при местном повреждении какого-либо из элементов конструкции (трубки, штуцера и т. п.), т. е. относительно низкая надежность привода. Для устранения этого недостатка применяют многоконтурные приводы;
- невозможность продолжительного и опасность чрезмерно интенсивного торможения. Продолжительное торможение может вызвать перегрев, и даже закипание тормозной жидкости из-за нагрева элементов конструкции тормозных механизмов (колодок, барабанов и т. п.). Интенсивное торможение с чрезмерным усилием может привести к повреждению уплотнительных элементов, что, в свою очередь, приведет к разгерметизации привода и потере его работоспособности;
- высокая чувствительность к попаданию воздуха в привод, резко снижающая его работоспособность (и даже приводящая к полному отказу) при завоздушивании системы;
- зависимость КПД привода от температуры тормозной жидкости (при низких температурах эффективность работы гидравлического привода резко снижается из-за повышения вязкости жидкости);
- использование в качестве рабочего тела специальных жидкостей, способных нанести вред окружающей среде, животным и человеку при попадании на почву и во внешнюю среду.
***
Общая схема работы тормозной пневмосистемы.
При запуске двигателя одновременно включается в работу компрессор. Он забирает атмосферный воздухи подает его в систему до момента достижения рабочего давления. Давление в системе определяет и ограничивает регулятор давления. Избыток воздуха направляется через выпускной клапан обратно в атмосферу. После регулятора давления воздух прогоняется через осушитель воздуха. Это устройство необходимо для фильтрации различных примесей и удержания паров атмосферной влаги. Сухой воздух обеспечивает безаварийную работу системы, особенно в морозное время. В большинстве систем регулятор давления и осушитель воздуха объединены в общий узел, оснащенный небольшим отдельным ресивером. Ресивер помогает осушителю выполнять функцию регенерации.
После осушителя воздух распределяется четырехконтурным защитным клапаном:
- в два независимых контура рабочей тормозной системы, оборудованных раздельными ресиверами;
- в контур стояночной и аварийной систем, оснащенный самостоятельным ресивером (через этот контур также происходит питание системы торможения прицепа);
- в контур питания дополнительных потребителей воздуха (пневмоподвески и других).
- Кроме разделения потока воздуха клапан обеспечивает:
- последовательное заполнение контуров сжатым воздухом.
- при падении в каком-либо давления ниже допустимого – герметичность в остальных.
Водитель осуществляет управление главным тормозным краном через педаль тормоза. Через полости тормозного крана воздух под давлением нагнетается в тормозные камеры передних колес, через управляющие элементы – тормозные камеры задних колес. Камеры штоками воздействуют на механизмы разведения (сжатия) тормозных колодок. Автомобиль тормозит.
В контуре стояночной и аварийной тормозных систем воздух из ресивера подается на ручной тормозной кран, который управляет подачей воздуха в энергоаккумуляторы, которые устанавливаются как правило на задние колеса. Посредствам ручного тормозного крана сбрасывается давление из такого аккумулятора. В результате, пружина воздействует на испонительные механизмы. Она принудительно давит на шток тормозной камеры, обеспечивая безопасную постановку грузового автомобиля на стоянку. Энергоаккумуляторы помогают избежать аварии во время движения. Когда давление системы упадет ниже допустимого, они тормозят машину.
Еще из ресивера контура стояночной и аварийной тормозных систем подается питание на кран управления тормозами прицепа. Пневматические системы автомобиля и прицепа соеденяются с помощью питающих соединительных головок. Управляющие сигналы в систему торможения прицепа параллельно поступают от тормозных систем автомобиля: рабочей, стояночной, аварийной.
При соединении тормозной системы прицепа с основной тормозной системой грузовика подключаются отдельно:
- питающая магистраль исполнительных механизмов,
- управляющая магистраль.
Если на прицепе стоят тормозные камеры, оснащенные энергоаккумуляторами, дополнительно собирается цепь управления секциями энергоаккумуляторов. По питающей магистрали сжатый воздух, минуя тормозной кран прицепа, наполняет ресивер прицепа. По управляющей магистрали пневмосигнал подается в цепь управления тормозным краном прицепа. В зависимости от расположения осей, прицепы оснащаются одним или двумя регуляторами тормозных сил. Эти устройства позволяют корректировать выходной сигнал с тормозного крана, исходя из загрузки прицепа. Отрегулированный сигнал поступает в антиблокировочную систему прицепа.
Антиблокировочные системы грузовика и прицепа контролируют процесс равномерного торможения колесами. Их работу обеспечивают:
- датчики угловой скорости колес,
- электромагнитные клапаны – модуляторы,
- электронный блок управления,
- сигнальные лампы.
Система контроля и сигнализации – это манометр, показывающий водителю давление в пневмосистеме (иногда два, по числу контуров рабочей системы), и индикаторные лампы разного цвета, через датчики, контролирующие работу системы и сигнализирующие о ее состоянии.
Тормозная пневмосистема грузового автомобиля технически сложный механизм. Тяжелая габаритная машина должна надежно и предсказуемо вести себя на любой дороге. Знание устройства, принципа действия составных частей и элементов тормозной системы поможет в правильном уходе за ней. В благодарность – тормоза не подведут водителя в экстремальной ситуации.
Различия тормозных камер для разных систем
Важной частью тормозной системы является механизм, который обеспечивает остановку движущегося автомобиля. Их устанавливают в колесах, в стояночной системе – возле коробки передач
Дисковый тормоз, который является частью вращения, состоит из тормозного диска и колодок, которые устанавливаются неподвижно по обе стороны внутри чугунного корпуса.
Барабанные тормозные камеры устанавливаются, в отличие от дисковых, на задних колесах. Преимущество их состоит в относительной дешевизне производства, хотя сложность конструкции делает обслуживание более затруднительным, чем вторые.
Принцип действия и устройство барабанных тормозных камер:
- Поршень;
- Регулятор тормоза;
- Пружины;
- Подача на ручной тормоз;
- Колодки – 2 шт.
При воздействии на педаль тормоза происходит прижатие поршнем обеих колодок к барабану. В основном, тормозные механизмы такого типа срабатывают самостоятельно после заклинивания. Благодаря этому, по окончании процесса торможения колодки возвращаются в исходное положение автоматически.
Как правило, обслуживание тормозных устройств и камер всех модификаций сводится к отрегулированию работы исполнительных систем и замене изношенных, расходных материалов тормозных механизмов (в барабанных – колодок). Практически во всех тормозных системах присутствуют электроусилители и дополнительные устройства активной безопасности.
Основное правило движения на дорогах – безопасность. Только исправность всех механизмов и систем в автомобиле может обеспечить его выполнение. Тормозная система является одним из основных в списке, регулирующих скорость и возможность вовремя остановиться, устройств.
Возможные неисправности тормозной системы автомобиля
Признаками неисправности могут служить следующие «симптомы»:
- когда машина тормознула, раздается резкий свист или скрежет;
- торможение неэффективно и транспортное средство проделывает слишком большой тормозной путь;
- у педали существенно увеличился ход;
- педаль опустилась;
- на панели индикаторы постоянно показывают низкий уровень жидкости в гидравлике (даже после обслуживания и дозаправки);
- сильная вибрация педали.
Причин подобных проявлений может быть несколько. Вот наиболее распространенные.
- Утечка. Приводит к таким «симптомам», как постоянный низкий уровень жидкости или увеличение тормозного пути. Вызывается повышенным износом или механическими повреждениями деталей (причем не только патрубков, по которым течет жидкость, но и цилиндров и даже колодок). Проблема решается обследованием авто на предмет утечки и заменой вышедшей из строя детали.
- Неисправность главного цилиндра. Приводит к увеличению мягкости педали. На практике вызывается клином цилиндра из-за перегрева или износа. Сопровождается снижением эффективности торможения. В случае перегрева цилиндра из-за повышенного давления регулируют или меняют усилитель. Если проблема возникла по причине износа цилиндра, то замене подлежит именно он.
- Повышенный износ диска. Сопровождается вибрацией педали при нажатии. Также может появляться скрежет. «Лечится» заменой диска.
- Попадание воздуха в жидкость. Вызывается неправильным обслуживанием и заправкой, а также нарушением работы атмосферной камеры усилителя. Приводит к существенному снижению эффективности торможения и увеличению ходя педали. Устраняют проблему путем перезаправки жидкости. Если проблемы в усилители, то его ремонтируют или меняют.
- Вибрация дисков. Вызывает визг при торможении. Решается расточкой диска и колодок или их полной заменой на новые.
Пневматическая тормозная система полуприцепа
В пневматической тормозной системе полуприцепа привод управления – это составляющие самого пневмопривода, которые передают сигнал на регулируемое или автоматическое срабатывание частей энергетического привода. Цифрой четыре на элементах управления пневмоприводом (регуляторах, клапанах, тормозных кранах и пр.) обозначается вход управляющего пневмо сигнала. На функциональных и структурных схемах вы можете увидеть такое же значение этого сигнала.
В пневматической тормозной системе полуприцепа энергетический привод – это элементы пневмопривода, за счет которых происходит питание частей привода управления или энергетического привода (пневмоцилиндров, энерго аккумуляторов, тормозных камер и пр.) сжатым воздухом. Цифрой один на элементах управления пневмопривода обозначается вход питающей магистрали. В некоторых случаях функции питающего может выполнять управляющий сигнал. Но даже в этом случае вход этого сигнала на схемах и элементах пневмопривода будет отмечен цифрой один.
Цифрой два на схемах и элементах управления всегда обозначается любой выходной сигнал.
Если же на элементах управления присутствуют не один, а много выходов и входов, тогда их маркировка происходит в порядке возрастания от исходного обозначения ( н-р: 9,10 или 18,19).
На элементах тормозного привода цифра три означает связь с атмосферой.