Принцип работы системы освещения и световой сигнализации автомобиля газ-53а

Поэтому системы освещения и световой сигнализации автомобиля являются одними из определяющих безопасность дорожного движения.

Лица, профессионально эксплуатирующие автомобили семейства «Урал» и, в частности, частности, автомобиль Урал-4320-31 знают, что в настоящее время практически отсутствует широкий доступ пользователей к цветным легко читаемым электрическим схемам отдельных систем электрооборудования этой машины. Поэтому авторы посчитали целесообразным разработать электрические схемы систем освещения, световой и звуковой сигнализации автомобиля Урал-4320-31 (в комплектации для Министерства Обороны) и представить их на суд заинтересованного читателя. Хотелось бы также отметить, что в данной относительно недорогой комплектации, автомобиль Урал-4320-31 широко закупается также и для эксплуатации в народном хозяйстве.

Электрическая схема системы освещения и системы световой сигнализации представлена в соответствии с рисунком 1. Причем на данной схеме представлены те приборы системы световой сигнализации, свет которых включается с помощью центрального переключателя света (габаритные огни передних и задних фонарей), а также фонарь задний противотуманный, который включается с помощью клавишного выключателя, но только после включения ближнего света фар. В таблице 1 дан перечень приборов электрооборудования автомобиля Урал-4320-31 согласно электрической схемы на рисунке 1.

Чтобы включить приборы системы освещения и системы световой сигнализации, подключенные к центральному переключателю света, нет необходимости включать выключатель стартера и приборов.

Электрическая схема систем световой и звуковой сигнализации представлена в соответствии с рисунком 2. На этой схеме представлены приборы, свет которых включается после включения в первое фиксированное положение выключателя стартера и приборов. В таблице 2 дан перечень приборов электрооборудования автомобиля Урал-4320-31 согласно электрической схемы на рисунке 2. Позиции приборов в таблицах соответствуют их позициям на электрической схеме соответствующего рисунка.

Т а б л и ц а 1 – Приборы электрооборудования автомобиля Урал-4320-31 (системы освещения и световой сигнализации)

Буферизированная схема световой и звуковой сигнализации

Схема общей сигнализации, представленная на рисунке 2 по принципу действия соответствует схеме сигнализации представленной выше.


Буферизированная схема световой и звуковой сигнализации

Но здесь добавлено промежуточное буферное реле K1 (

220 вольт), исключающее выход из строя контактов реле выходных устройств приборов.

При замыкании контакта реле выходных устройств приборов, через катушку реле / пускателя K1 проходит сравнительно небольшой ток, в большинстве случаев не превышающий предельно-допустимый паспортный. В то же время замыкающий, силовой контакт этого реле / пускателя, может коммутировать достаточно большую мощность для подключения лампочки и сирены свето-звуковой сигнализации.

Как появился свет на автомобилях

Первым источником автомобильного света стал газ ацетилен – использовать его для освещения дороги в 1896 году предложил летчик и авиаконструктор Луи Блерио. Запуск ацетиленовых фар – целый ритуал. Сначала требуется открыть краник ацетиленового генератора, чтобы вода закапала на карбид кальция, который находится на дне «бочонка». При взаимодействии карбида с водой образуется ацетилен, который по резиновым трубкам поступает к керамической горелке, что находится в фокусе отражателя. Теперь шофер должен открыть стекло фары, чиркнуть спичкой — и пожалуйста, в светлый путь. Но максимум через четыре часа придется остановиться – для того, чтобы вновь открыть фару, вычистить ее от копоти и заправить генератор новой порцией карбида и воды. Однако светили карбидные фары на славу. Например, созданные в 1908 году Вестфальской металлопромышленной компанией (так в то время называлась Hella) ацетиленовые фары освещали до 300 метров пути! Столь высокого результата удалось достичь благодаря использованию линз и параболических рефлекторов. Первая автомобильная лампа накаливания была запатентована еще в 1899 году французской фирмой Bassee & Michel. Но вплоть до 1910 года лампы с угольной нитью накаливания были ненадежными, очень неэкономичными и требовали тяжелых батарей увеличенного размера, которые к тому же зависели от станций подзарядки: автомобильных генераторов подходящей мощности еще не существовало. И тут произошел переворот в «осветительных» технологиях – нити накаливания стали делать из тугоплавкого вольфрама (температура плавления 3410°С), который не «выгорал». Первым серийным автомобилем с электрическим светом (а еще – с электрическим стартером и зажиганием) стал Cadillac Model 30 Self Starter («самозапускающийся») 1912 года. Уже через год 37% американских автомобилей имели электроосвещение, а еще через четыре — 99%! С разработкой подходящей динамомашины исчезла и зависимость от зарядных станций.

Ремонт электрооборудования автомобиля

В ремонте электрооборудования есть немало различных нюансов, поэтому во многих случаях без квалифицированных автоэлектриков не обойтись. Безусловно, многие водители могут сами отремонтировать стартер или генератор, обслужить аккумуляторную батарею, но разобраться в электропроводке с большим количеством электроники иной раз не под силу даже достаточно опытному мастеру.

Также не просто провести диагностику двигателя. Сейчас уже практически нет таких автомобилей, у которых системой зажигания не управлял бы электронный блок. Для выяснения причины неисправности используются специальные автомобильные сканеры, или к бортовой системе авто подключается ноутбук. На мониторе диагностического устройства отображаются ошибки, которые есть в электрической схеме, на экран выводятся различные параметры. Ремонт в системе зажигания сводится к замене датчиков, восстановлению контактов в проводах или к замене самой проводки.

Простая схема световой и звуковой сигнализации

Схема общей сигнализации, показанная на рисунке 1 содержит минимальное количество коммутационных элементов.

Простая схема световой и звуковой сигнализации КИП и А

S1. Si – нормально разомкнутые контакты реле приборов, замыкающиеся при достижении уставок приборов значений, при которых должна срабатывать сигнализация. SB1 – Кнопка «Опробование». Имитирует срабатывание сигнализации. При нажатии загорается лампочка E1 и слышен звук сирены / звонка B1. SB2 – Кнопка «Съем звука». Служит для отключения звука сигнализации. Световая сигнализация при этом продолжает работать. K1.1 – нормально разомкнутый контакт реле K1. K1.2 – нормально замкнутый контакт реле K1. K1 – электромагнитное реле / пускатель, с рабочим напряжением 220 вольт переменного тока на катушке, с одним нормально замкнутым и одним нормально разомкнутым контактами. E1 – лампа накаливания 220 вольт – световая сигнализация. B1 – сирена / звонок, с рабочим напряжением 220 вольт переменного тока – звуковая сигнализация.

Принцип действия сигнализации

Контакты реле приборов S1. Si ( их может быть неограниченное количество), запараллелены между собой и с кнопкой «Опробование» сигнализации.

При замыкании любого из них загорается лампочка «E1» световой сигнализации, а также через нормально замкнутый контакт K1.2 реле K1, напряжение 220 вольт подается на сирену / звонок звуковой сигнализации.

Если сигнализация включена, а нужно отключить звук, — нажатием кнопки «Съем звука», напряжение подается на катушку реле K1. При его срабатывании размыкается цепь питания сирены (контакт K1.2), звук отключается. Само же реле подхватывается через контакт K1.1.

Если контакт прибора, вызвавший включение сигнализации размыкается, то соответственно выключается сигнализация – и световая, и звуковая. Реле K1 приводится в исходное состояние.

При использовании лампочки и сирены большой мощности, через коммутационные контакты S1. Si реле приборов может проходить большой ток, что может привести к их подгоранию и выходу из строя. Поэтому, при реализации данной схемы необходимо следить за тем, чтобы суммарный ток лампочки и сирены не превышал предельно допустимый паспортный ток для выходных устройств (реле) приборов.

Проблема ослепления

Впервые проблема ослепления встречных водителей возникла с появлением карбидных фар. Боролись с ней по-разному: перемещали рефлектор, выводя из его фокуса источник света, с той же целью двигали саму горелку, а также ставили на пути света различные шторки, заслонки и жалюзи. А когда в фарах засветилась лампа накаливания, в электрическую цепь при встречных разъездах даже включали добавочные сопротивления, снижавшие накал нити. Но лучшее решение предложила фирма Bosch, в 1919 году создавшая лампу с двумя нитями накаливания — для дальнего и ближнего света. К тому времени уже был придуман рассеиватель — покрытое призматическими линзами стекло фары, отклоняющее свет лампы вниз и по сторонам. С тех пор перед конструкторами стоят две противоположные задачи: максимально осветить дорогу и не допустить ослепления встречных водителей. Увеличить яркость ламп накаливания можно, подняв температуру нити. Но при этом вольфрам начинает интенсивно испаряться. Если внутри лампы вакуум, то атомы вольфрама постепенно оседают на колбе, покрывая ее изнутри темным налетом. Решение проблемы нашли во время Первой мировой войны: с 1915 года лампы стали заполнять смесью аргона и азота. Молекулы газов образуют своеобразный «барьер», препятствующий испарению вольфрама. А следующий шаг был сделан уже в конце 50-х годов: колбу стали наполнять галогенидами, газообразными соединениями йода или брома. Они «связывают» испаряющийся вольфрам и возвращают его на спираль. Первую галогенную лампу для автомобиля представила в 1962 году Hella — «регенерация» нити позволила поднять рабочую температуру с 2500 К до 3200 К, что увеличило светоотдачу в полтора раза, с 15 лм/Вт до 25 лм/Вт. При этом ресурс ламп вырос вдвое, теплоотдача снизилась с 90% до 40%, а размеры стали меньше (галогенный цикл требует близости нити и стеклянной «оболочки»). А главный шаг в решении проблемы ослепления был сделан в середине 50-х — французская фирма Cibie в 1955 году предложила идею асимметричного распределения ближнего света для того, чтобы «пассажирская» обочина освещалась дальше «водительской». И через два года «асимметричный» свет в Европе был узаконен.

Ближний светДальний свет

Так работают наиболее распространенные ранее фары
с параболическим отражателем и двухнитевой лампой Н4. Для
предотвращения ослепления встречных водителей нить ближнего света
располагают чуть впереди и выше фокальной точки и экранируют
специальным колпачком внутри колбы, используя только верхнюю половину
отражателя (слева). А нить дальнего света расположена в фокусе и
освещает всю поверхность отражателя (справа).

Фара с однонитиевой лампойПрожекторная фара ближнего светаФара с отражателем эллипсоидной формы

Отражатель «свободной» формы отличается от
параболического. Это отличие не заметно на глаз, но поверхность
рассчитана таким образом, что направляет весь свет от однонитевой лампы
в заданном направлении — чуть вниз, чтобы избежать ослепления.

Впервые «прожекторная» фара ближнего света с
эллипсоидным отражателем появилась в 1986 году на «семерке» BMW. Лучи,
собираясь во втором фокусе отражателя, «подрезаются» экраном, который
обеспечивает заданную светотеневую границу, а затем еще раз
фокусируются линзой.

В 1988 году с помощью компьютера отражателю
эллипсоидной фары
удалось придать «свободную» форму — основная часть
лучей проходит над экраном, чем обеспечивается лучшая эффективность.

Принцип работы

В основе этой системы безопасности лежат датчики, которые могут улавливать тепловые и инфракрасные сигналы. Также есть специальная камера, которая снимает изображение. После чего вся информация передается на бортовой компьютер.

После чего бортовой компьютер обрабатывает полученную информацию и проецирует ее на дисплей в виде бесцветного масштабного образа.

Вообще, по принципу действия различаются два вида системы ночного видения.

  1. Активные. При своей работе используют дополнительные источники инфракрасного цвета, которые устанавливаются на автомобиль отдельно. На выходе водитель получит высокое разрешение и четкость изображения. Дальность работы таких систем доходит до 250 метров. Активные системы для своих автомобилей используют концерны Тойота и Мерседес.
  2. Пассивные. У таких систем нет своего инфракрасного датчика. Однако тепловизор самостоятельно фиксирует инфракрасное излучение от самих объектов. Работает он на расстоянии до 290-320 метров. Контрастность на выходе будет очень высокой, а вот разрешение, напротив, низкое. Такие системы безопасности бывают у БМВ, АУДИ и Хонда.

Какая система лучше?

Наиболее совершенными и информативными, по мнению специалистов являются именно активные системы ночного видения. Разберем их работу на примере одной их технических новинок от концерна Мерседес – системе Night View Assist Plus. ЕЕ уникальность заключается в том, что благодаря совершенным датчикам она проинформирует водителя о ямах и неровностях на дороге и предупредит пешеходов о потенциальной опасности. Чтобы понять, как это работает давайте, разберемся из чего, состоит система:

  • инфракрасные активные камеры — они располагаются в фарах головного света;
  • видеокамера — находится за лобовым стеклом;
  • электронный блок управления;
  • дисплей в кабине — на него будет выводиться вся информация.

Итак, работа системы построена следующим образом:

  • ик-камеры фиксируют всю окружающую дорожную обстановку – препятствия неровности, пешеходов и встречный транспорт;
  • задача видеокамеры, понять в какое время суток едет автомобиль, а также следить и вовремя предупреждать о наличии на трассе помех или других автомобилей, которые движутся по встречной полосе или просто едут впереди;
  • электронный блок управления, должен обработать и проанализировать всю полученную информацию, после чего она будет выведена на экран информационного табло.

Последний, кстати, в зависимости от модели автомобиля может быть как отдельным, так и интегрированным в навигационную систему машины.

В самых первых системах ночного видения информация проецировалась прямо на лобовое стекло. Однако во время испытания, выяснилось, что это только мешает водителю.

О пешеходах, которые могут не заметить приближающийся автомобиль, разработчики системы безопасности тоже позаботились. Они будут предупреждены об опасности с помощью коротких световых сигналов. Однако работает это лишь в том, случае если нет встречных машин, чтобы не ослепить их водителей.

Идеальными для работы системы являются следующие условия:

  • скорость движения автомобиля более 45 километров в час;
  • расстояние пешеходов и помех на трассе не далее, чем 80 метров от автомобиля. (В иных случаях информация может быть незначительно искажена).

Установка системы

Вообще, система ночного видения для премиального автомобиля, является штатной частью системы активной безопасности и переустанавливается еще с завода. Однако на сегодняшний день можно при желании приобрести системы и отдельно и установить ее хоть на Жигули.

Стоимость комплекта от 50 до 100 тысяч рублей. Кроме того, придется заплатить за монтаж и настойку оборудования. Сделать это самостоятельно весьма непросто.

Будущее системы ночного видения автомобиля

Сейчас подобные системы безопасности скорее экзотика, которую можно встретить только на очень дорогих машинах. Однако суда по темпам развития системы, вскоре она может стать и весьма обыденной опцией, которая появится даже на наших Жигулях. В дополнение к автопилоту, естественно.

Пока же инженеры занимаются совершенствованием своего детища. К примеру, недавно, компания БМВ представила интеллектуальную систему безопасности, которая находит пешеходов в опасной близости от проезжей части. Делается это при помощи датчиков сердцебиения. Они умеют находить живое существо в радиусе 100 метров от двигающегося автомобиля. Информация об этом выводится на специальный дисплей, кроме того, система сама освещает идущего по обочине пешехода с помощью специальных диодных фар, которые могут поворачиваться на 180 градусов и освещать объекта находящиеся даже на отдалении от проезжей части.

Системы отключения дальнего света и коррекции света фар

В целях недопустимости ослепления встречных водителей легковые автомобили могут оборудоваться автоматической системой отключения дальнего света. Распознавание дорожной обстановки впереди автомобиля осуществляется видеокамерой дальнего света, расположенной в основании внутреннего зеркала заднего вида, жестко закрепленного на лобовом стекле.

Система обеспечивает водителю лучшую видимость в темное время суток, так как дальний свет всегда остается включенным, если дорожная обстановка и условия движения это допускают (рис. 5, а). Если камера системы распознает движущийся навстречу или впереди идущий автомобиль, дальний свет своевременно отключается, чтобы не ослеплять участников дорожного движения (рис. 50, б). При покидании распознанным автомобилем зоны обнаружения системы дальний свет автоматически включается (рис. 50, в).

Рис. 5. Принцип работы автоматической системы отключения дальнего света в случае движущегося навстречу автомобиля: а, б — дальний свет включен; в — дальний свет выключен

По освещенности дороги система распознает движение по населенным пунктам и городам, отключая дальний свет. После выезда из населенного пункта или города дальний свет снова автоматически включается. Программное обеспечение системы способно распознать густой туман, что также приводит к отключению дальнего света.

Более совершенной является автоматическая коррекция дальности света фар. Такая система плавно переключает ближний и дальний свет фар в зависимости от фактических условий окружающей среды и дорожной обстановки. Специальная видеокамера в БУ распознает встречный и обгоняющий транспорт. В своей работе функция автоматической коррекции дальности света фар учитывает также данные навигации, получая от нее информацию о расположенных перед автомобилем участках маршрута.

Если система распознает движущийся во встречном направлении автомобиль, то дальность света фар уменьшается, пока они полностью не переключатся в режим ближнего света (рис. 6). Таким образом, исключается ослепление водителей встречного транспорта. После того как встречный автомобиль проедет, если только дорожная обстановка это допускает, дальность света фар снова увеличивается до режима дальнего света.

Рис. 6. Освещение дороги при наличии встречного автомобиля при автоматической коррекции дальности света фар

От навигационной системы поступают также данные о приближении к перекресткам. В таком случае включается дополнительная подсветка перекрестков (рис. 7).

Рис. 7. Освещение дороги при наличии перекрестка без дополнительной подсветки (а) и с дополнительной подсветкой (б)

Одной из современных систем освещения является активный свет, применяемый, например, у автомобилей Touareg. Главная его особенность заключается в том, что он не ослепляет водителей встречных автомобилей. Ксеноновые прожекторные фары позволяют ездить с постоянно включенным дальним светом. На ближний свет фары переключатся автоматически, как только камера, установленная под лобовым стеклом (она же следит за разметкой), заметит встречный или попутный транспорт. В фарах есть специальная шторка с электроприводом, которая позволяет перекрыть световой пучок и сформировать нужную светотеневую границу (рис. 8).

Рис. 8. Освещение дороги с активным светом

Электронная система сама следит за дорогой и передвигает шторку таким образом, чтобы встречная машина всегда находилась в тени. Система автоматически следит сразу за несколькими автомобилями, поэтому водитель может спокойно ехать по загородной трассе с включенным дальним светом, что повышает безопасность движения. Время быстродействия системы 350 мс. Работа и взаимодействие систем безопасности происходит посредством новой более быстродейственной шины FlexRay (10 Мбит/c).

Америка-Европа

Подход к системам освещения в Старом Свете и за океаном различается кардинально. Начнем с того, что американские законы вплоть до 1975 года запрещали использование фар не круглой формы и галогенных ламп! Причем в Штатах лампа и фара были объединены в одно целое- лампы-фары за океаном использовали с 1939 года. Преимущество у таких приборов было одно- герметичность лампы-фары позволяла покрывать поверхность рефлектора серебром, отражающая способность которого достигает 90% (против 60% у распространенных в те времена хромированных рефлекторов). Но менять лампу-фару, естественно, приходилось целиком. А главное отличие- в Европе с 1957 года принято асимметричное светораспределение с лучшим освещением «пассажирской» обочины и с четкой светотеневой границей. Но в Америке использование фар с границей света и тени разрешили только с 1997 года. Разрешили, но не потребовали! Свет «американских» фар распределяется почти симметрично, вовсю ослепляя встречных водителей. К тому же американцы регулируют фары только по вертикали. А еще в США и Канаде отсутствует единый порядок сертификации приборов освещения. Каждый производитель лишь гарантирует соответствие своих фар федеральному стандарту по безопасности движения транспортных средств (FMVSS), а подтверждать это приходится, например, в случае аварии по вине световых приборов. Предполагается, что официально импортируемые из США автомобили проходят проверку на соответствие европейским нормам. «Американские» фары маркируются аббревиатурой DOT (Department Of Transport, Министерство транспорта), а «европейские» — буквой «Е» в кружочке с цифрой-кодом страны, где фара одобрена для использования (Е1 — Германия, Е2 — Франция, и т.д.).

Задачи уличного освещения

Когда солнце уходит за горизонт, уличное освещение занимает его место

Проще было бы отказаться от регулирования вообще, просто оставить гореть уличные фонари постоянно, но это не рентабельно. Поэтому и монтируют системы управления освещением.

У них несколько задач:

  1. По окончании светового дня включить фонари, по наступлению рассвета выключить.
  2. Выполнить эти же операции при ухудшении естественной освещенности улиц в силу различных природных факторов.

При таком тумане уличные фонари тоже немного могут помочь

Еще пятьдесят лет назад, только эти функции и выполнялись, об экономии электроэнергии никто не заботился, а решение более сложных задач было трудно реализуемо и затратно. Современные системы управления освещением более функциональны, они дополнительно умеют многое.

Экономия электроэнергии — одна из главных задач систем электронного управления уличным освещением

  1. Производить отключение всего осветительного оборудования или части его с целью экономия электроэнергии.
  2. Определять исправность системы.
  3. Контролировать расход электроэнергии.
  4. Дистанционно передавать данные о системе на панели диспетчерского управления уличным освещением.

Сканирующие системы освещения

Датчики, сканирующие пространство перед автомобилем (распознавание образов), уже используются в серийных автомобилях. Примером системы распознавания образов является новый тип сенсорной системы, различающей объекты перед автомобилем (разработана компанией Audi). Новая высокочувствительная система способна формировать трехмерное изображение препятствия перед ТС (рис. 14).

Рис. 14. Сканирующая система освещения

В основе технологии — источник модулированного инфракрасного излучения и датчик (он размещен позади лобового стекла на уровне зеркала заднего вида), сделанный из новых фоточувствительных полупроводниковых элементов, известных как фотонные смешивающие устройства (Photonic Mixer Devices, PMD). Эти устройства способны обрабатывать сигналы, возвращенные от множества точек предмета одновременно. По строению похожи на обычные приборы с зарядовой связью (так называемые ПЗС-матрицы), применяющиеся в видео- и фотокамерах. Они используют различие во времени, которое требуется лучам, чтобы вернуться от различных объектов сцены к каждому из чувствительных элементов матрицы PMD.

Для вычисления объемного изображения система сравнивает сигнал от каждого пикселя матрицы с опорным модулированным сигналом, поставляемым схемой излучателя, при этом посторонняя инфракрасная засветка (например, от солнца) отделяется от собственного сигнала.

Поле зрения датчика по горизонтали составляет 32°, а по вертикали – 8°. Частота сканирования препятствий – 200 Гц, что позволяет быстро улавливать изменение дорожной обстановки.

Просмотров:
865

Ксенон и светодиоды

Вековое господство лампы накаливания близится к концу. Достойно «завершить карьеру» ей помогают благородные газы криптон и ксенон. Последний считается одним из лучших наполнителей для ламп накаливания- с ксеноном можно поднять температуру нити вплотную к точке плавлению вольфрама и приблизить свет по спектру свечения к солнечному. Но наполненные ксеноном обычные лампы накаливания- это одно. А «ксенон» с ярким голубым свечением, который применяют на дорогих автомобилях,- это принципиально другое. В ксеноновых газоразрядных лампах светится не раскаленная нить, а сам газ- вернее, электрическая дуга, которая возникает между электродами при газовом разряде при подаче высоковольтного напряжения.

Впервые такие лампы (Bosch Litronic) были установлены на серийном BMW 750iL в 1991 году. Газоразрядный «ксенон» на голову эффективнее самых совершенных ламп накаливания- на бесполезный нагрев здесь расходуется не 40% электроэнергии, а всего 7—8%. Соответственно, газоразрядные лампы потребляют меньше энергии (35 Вт против 55 Вт у галогенных) и светят при этом вдвое ярче (3200 лм против 1500 лм). А поскольку нити нет, то и перегорать нечему- ксеноновые газоразрядные лампы служат гораздо дольше обычных. Но устроены газоразрядные лампы сложнее.

Главная задача- зажечь газовый разряд. Для этого из 12 «постоянных» вольт бортовой сети нужно получить короткий импульс из 25 киловольт- причем переменного тока, с частотой до 400 Гц! Для этого служит специальный модуль зажигания. Когда лампа зажглась (для разогрева требуется некоторое время), электроника снижает напряжение до 85 вольт, достаточных для поддержания разряда. Сложность конструкции и инерция при зажигании ограничили первоначальное применение газоразрядных ламп режимом ближнего света. Дальний светил по старинке- «галогенкой». Объединить ближний и дальний свет в одной фаре конструкторы смогли через шесть лет, причем существует два способа получить «биксенон». Если используется прожекторная фара (как та, что придумала Hella), то переключение режимов света осуществляется экраном, находящимся во втором фокусе эллипсоидного отражателя: в режиме ближнего света он отсекает часть лучей. При дальнем экран прячется и не препятствует световому потоку. А в отражающем типе фар «двойное действие» газоразрядной лампы обеспечивается взаимным перемещением рефлектора и источника света. В итоге вслед за фокусным расстоянием изменяется и светораспределение. Но по данным французской фирмы Valeo, применив отдельные газоразрядные лампы для ближнего и дальнего света, можно достичь на 40% лучшей освещенности, чем у «биксенона». Правда, модулей зажигания требуется уже не два, а четыре- такие фары имеет дорогой Volkswagen Phaeton W12.

Однако будущее газоразрядных ламп вовсе не такое яркое, как излучаемый ими свет. Наибольший успех специалисты прочат светодиодам. Светодиод- это полупроводниковый прибор, излучающий свет при прохождении тока. До начала 90-х их автомобильное применение ограничивалось индикацией- уж слишком низкой была светоотдача. Однако уже в 1992 году Hella оснастила «трешку» BMW Cabrio центральным стоп-сигналом на основе светодиодов, и сегодня они все шире используются в задних фонарях в качестве «габаритов» и стоп-сигналов. Светодиоды срабатывают на 0,2 секунды быстрее традиционных лампочек, тратят меньше энергии (для стоп-сигналов- 10 Вт против 21 Вт) и отличаются почти неограниченным сроком службы. Но для того, чтобы заменить лампы светодиодами в фарах головного света, нужно преодолеть ряд препятствий. Во-первых, даже самые лучшие светодиоды по эффективности пока сопоставимы только с галогенными лампами (светоотдача- около 25 люменов на ватт). При этом они дороже и требуют специальной системы охлаждения- ведь это такие же полупроводниковые приборы, как и процессоры компьютеров. Но разработчики уверяют, что к 2008 году светоотдача диодов достигнет уже 70 лм/Вт (у нынешнего «ксенона»- 90 лм/Вт). Так что первые серийные светодиодные фары могут появиться в 2010 году. А пока полупроводникам поручают второстепенные функции- например, постоянный «дневной свет», как это сделала Hella, расположив в каждой фаре Audi A8 W12 по пять светодиодов.

Генератор

Генератор смело можно назвать основным поставщиком электрической энергии в электрооборудование автомобиля. Такая, можно сказать, мини-электростанция, приводимая в движение двигателем автомобиля через ременную передачу. Он же и поддерживает аккумулятор в постоянном рабочем состоянии, подзаряжая его по мере надобности.

Мощность генератора и конечно емкость аккумулятора должны соответствовать нагрузке электрических систем автомобиля на всех возможных режимах работы автомобиля.

Электрооборудование автомобиля имеет много потребителей электроэнергии, с ними мы сейчас и разберемся. Вы даже не представляете, как их много, но что приятно, все они для нас, для нашего удобства, безопасности и комфорта.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: