Краткие сведения из теории подшипников качения

Установка подшипников качения на валах передач с косозубыми колесами

На валы цилиндрических передач с косозубыми колесами устанавливают подшипники, воспринимающие осевые и радиальные нагрузки. При угле наклона зубьев до 9° устанавливают однорядные шариковые подшипники одно- и двухрядные конические роликоподшипники и сферические радиальные роликоподшипники. При больших углах наклона зубьев устанавливают однорядные конические роликоподшйпники с углом контакта свыше 25° или шариковые радиально-упорные подшипники с углом контакта 26° и больше.

В двухступенчатом редукторе (лист 14, рис. 1) устанавливают радиальные однорядные шарикоподшипники. Для предупреждения защемления подшипника предусматривают зазор между торцом наружного кольца подшипника и крышкой. Заданная величина зазора достигается шлифованием торца крышки или установкой прокладок между крышкой и наружным кольцом подшипника. Величина зазора примерно 0,0015 l, где l — расстояние между подшипниками.

В трехступенчатом редукторе устанавливают однорядные конические роликоподшипники (лист 14, рис. 2). Регулирование осевого зазора в конических подшипниках должен производить квалифицированный монтажник. Необходимо иметь в виду, что установка конических подшипников допускается при расстоянии между ними не более 500 мм, допускается и до 600 мм. но при условии, что температура валов не должна превышать 70 °С. При этих условиях в инструкциях по монтажу необходимо указывать, что установка подшипников производится с наибольшим допустимым осевым зазором. При дальнейшем увеличении расстояния между подшипниками линейное удлинение вала при нагревании может поглотить все осевые зазоры в подшипнике, что приведет к заклиниванию роликов и повреждению подшипника.

В зубчатых передачах при окружных скоростях быстроходной ступени менее 2…3 м/с при смазывании зацепления разбрызгиванием масло может не попадать на подшипники второго и третьего валов. В таких случаях применяют раздельное смазывание подшипников и зацепления (лист 14, рис. 3).

При раздельном смазывании полости подшипников отделены от масляной ванны редуктора врезными крышками с лабиринтным уплотнением. В подшипники закладывают пластичную смазку через отверстие в крышке подшипника (см. разрез Б—Б).

В редукторах с косозубыми зубчатыми колесами шириной Ъ больше 0,4аw, изготовленными из высокопрочных сталей, однорядные конические роликоподшипники недолговечны. В таких случаях применяют двухрядные конические подшипники, которые позволяют создавать технологичную конструкцию (лист 14, рис. 4).

При установке конических двухрядных роликоподшипников необходимо надежное закрепление внутренних колец подшипников в осевом направлении, для чего применяют две гайки с мелкой метрической резьбой и дополнительное стопорение. При больших расстояниях между подшипниками в косозубых передачах один двухрядный конический подшипник закрепляют, а второй — остается плавающим. Установка конических подшипников в редукторах с косозубыми передачами позволяет применять наименьшее число деталей для их осевого крепления. Конические однорядные подшипники не требуют крепления на валу внутреннего кольца, так как в силу конструктивной особенности подшипника оно не может перемещаться вдоль вала.

Большинством изготовителей одно-, двух- и трехступенчатых редукторов общего назначения принята установка валов на однорядных конических подшипниках.

Стаканы для подшипников

Для размещения опор валов, состоящих из нескольких подшипников, применяют стаканы (рис. 12). Стаканы обычно выполняют из чугунного литья марки СЧ15 и из стали, которые применяют в чугунном или силуминовом корпусе при значительных нагрузках.

Рис. 12. Конструкции стаканов для подшипников: а – для универсальной сборки; б – для двух конических подшипников (внутри стакана); в – для двух конических подшипников (один снаружи и один внутри); г – для двух конических подшипников с буртами

Толщину стенки стаканов δ, мм, принимают в зависимости от диаметра D отверстия стакана под подшипник. Стаканы для подшипников вала конической шестерни (рис. 12, а) перемещают при сборке для регулировки осевого положения конической шестерни. Для этого применяют посадку стакана в корпусе H7/js6. Другие стаканы после их установки в корпус остаются неподвижными. Тогда применяют посадки типа H7/k6 или H7/m6.

Посадки подшипников на вал и в корпус

Внутренние кольца подшипников часто закрепляют на валах посредством только соответствующей посадки (рис. 2, а).

Рис. 2. Основные схемы крепления подшипников на валу: а – неподвижное соединение по прессовой посадке; б – торцовой шайбой с винтом и стопорной планкой; в – круглой шлицевой гайкой и стопорной шайбой; г – стопорным кольцом; д – конусной разрезной втулкой и натяжной круглой гайкой и стопорной шайбой

Выбор характера посадки подшипника на вал и в корпус зависит от ряда факторов: типа и размера подшипника, условий его эксплуатации, величины, направления и характера нагрузок, класса точности подшипника, нагружения неподвижного кольца.

Различают следующие виды нагружения неподвижных колец: местное циркуляционное и колебательное.

Местная нагрузка воспринимается ограниченным участком дорожки качения и передается на ограниченный участок корпуса.

Циркуляционная нагрузка воспринимается всей окружностью дорожки качения и передается на всю опорную поверхность корпуса. Это наблюдается в том случае, когда вектор нагрузки вращается.

Колебательная нагрузка распространяется на определенный участок невращающегося кольца, например, при качательном движении.

Для вращающегося кольца, передающего внешнее усилие, следует назначать неподвижные посадки, например, в редукторах внутреннее кольцо подшипника должно насаживаться на вал с натягом. Наружное кольцо подшипника, сопряженное с неподвижной частью машины, должно иметь посадку, обеспечивающую весьма малый натяг или даже небольшой зазор, дающий возможность кольцу при работе несколько проворачиваться относительно своего посадочного места, что обеспечивает более равномерный износ беговых дорожек.

Посадка внутреннего кольца подшипника на вал или ось осуществляется по системе отверстия, а наружного кольца в корпус – по системе вала.

В связи с этим соединение внутренних колец подшипников с валами при переходных посадках будет фактически неподвижным с гарантированным натягом. При осуществлении неподвижной посадки следует очень тщательно следить за тем, чтобы соединение имело определенный натяг: ослабление посадки ведет к проскальзыванию вала по внутреннему кольцу, температура подшипника резко повышается, и он выходит из строя. При увеличенном натяге внутреннее кольцо подшипника расширяется, радиальный зазор между внутренним и наружным кольцом уменьшается. Это может привести к заклиниванию тел качения: подшипники нагреваются и быстро разрушаются.

Особенно тщательно следует осуществлять посадки радиальных шарикоподшипников. Шейки валов и расточенные отверстия корпусов с грубо обработанными посадочными поверхностями не должны допускаться к монтажу.

Шероховатость обработки и геометрические формы посадочных мест в значительной степени влияют на долговечность подшипников.

Овальность, конусность и биение заплечиков должны быть в пределах допусков, установленных для поверхностей, сопрягаемых с подшипниками.

Следует помнить, что от точности заплечиков валов и корпусов, а также размеров галтелей вала зависит нормальная работа подшипников качения и всего узла. При сборке необходимо следить за тем, чтобы заплечики валов и корпусов были строго перпендикулярны к оси вала, и кольца подшипников плотно прилегали к заплечикам по всей поверхности.

Размеры заплечиков вала и корпуса должны быть такими, чтобы при действии значительной осевой нагрузки торцы заплечиков не сминались. Однако очень большие заплечики затрудняют демонтаж подшипников, так как в этом случае захватить кольцо подшипника, из-за выступающего заплечика, не представляется возможным. Нормальная высота заплечиков ориентировочно должна быть равна 1/2 толщины внутреннего кольца. Если нельзя предусмотреть заплечики нормальной высоты, то применяют специальные упорные кольца.

Радиус галтели вала должен быть всегда несколько меньше, чем радиус фаски внутреннего кольца подшипника. То же относится к наружному кольцу.

При проектировании валов часто вместо галтелей делают проточки. Однако они ослабляют вал, вызывая концентрацию напряжений, и поэтому ими можно заменять галтели только в том случае, если вал имеет значительный запас прочности.

В тяжело нагруженных валах максимальные напряжения сосредоточиваются на посадочных местах вала у заплечиков. В таких случаях делать выточки и даже галтели нежелательно. Рекомендуется применять плавный конусный переход и ставить специальную упорную шайбу.

Основные приемы монтажа подшипников

При монтаже подшипников необходимо особо тщательно следить за чистотой рабочего места, монтажного инструмента и сопрягаемых деталей.

При сборке следует обратить внимание, чтобы на деталях были предусмотрены элементы, которые обеспечивали бы более точный и облегченный монтаж и демонтаж подшипника. Вот некоторые из них:

  • на шейке вала и у расточки корпуса или стакана должны быть фаски;
  • поверхность опорных шеек под подшипники качения с внутренним кольцом качения и без внутреннего кольца должна быть не ниже 46 HRC;
  • диаметр шейки вала под посадку внутреннего кольца подшипника должен быть больше, чем диаметры предыдущих участков вала, чтобы кольцо подшипника свободно проходило через них.

В отдельных случаях допускают равенство номинальных диаметров участков вала, посадочного места и расположенного перед ним. Однако при этом обработка обоих участков должна быть выполнена с различными допусками так, чтобы нагретый в минеральном масле до t=100°С подшипник проходил свободно на посадочное место.

Посадка подшипников на валы, в гнезда корпусов деталей может быть выполнена вручную, с помощью ручных, гидравлических или пневматических прессов, с подогревом в горячем масле (80-90°С) или с охлаждением твердой углекислотой – сухим льдом (температура мину. 11-80°С).

Для запрессовки шарикоподшипника на шейку вала могут быть использованы ручные приспособления – монтажные стаканы и оправки (рис. 1; а, б, в). Применение оправок обеспечивает равномерную посадку подшипника на шейку вала, предотвращает перекос при установке и предохраняет подшипник от повреждений. Для запрессовки подшипников на валы, имеющие на конце резьбу, часто используют гаечные и винтовые устройства (рис. 1, г).

При всех способах монтажа подшипников на валы и в корпусы необходимо соблюдать следующие основные правила.

Прикладывать усилие запрессовки только к тому кольцу подшипника, которое устанавливается на посадочное место с натягом (рис. 1, д).

Рис. 1. Приспособление для запрессовки подшипников: а – запрессовка подшипника с помощью оправки и ручного пресса; б – с помощью стакана 1 и кольца 2; в – с помощью ручной оправки; г – с помощью гаечного устройства; 1 – гайка; 2 – корпус; 3 – шайба; 4 – державка

При одновременной установке подшипника на вал и в корпус усилие запрессовки передавать через оба кольца (рис. 1; б, в).

Для установки кольца подшипника на посадочное место без перекоса усилие запрессовки должно распределяться равномерно по всей торцовой поверхности кольца. Для этой цели следует пользоваться специальными монтажными оправками, трубами или кольцами. При установке подшипника при помощи молотка и медной выколотки необходимо наносить удары поочередно по всем точкам монтируемого кольца, причем каждый последующий удар наносить в диаметрально противоположной зоне торца кольца.

Не следует применять таких способов монтажа подшипников, при которых усилие запрессовки может передаваться на тела качения, а также не следует наносить удары молотком непосредственно по кольцам подшипников.

Монтажные приспособления должны быть выполнены так, чтобы при запрессовке подшипников усилия не передавались на сепаратор.

При прогреве подшипников, монтируемых на валы, следует применять ванны с электрическим подогревом или сдвоенные баки; один из баков (внутренний) наполняется маслом, а другой (наружный) – водой, которую доводят до кипения. Прогрев подшипников ведется в минеральном масле, нагретом до 80-90°С. Прогрев корпусов осуществляют погружением их в нагретое масло либо путем обдувки горячим воздухом.

Существенную роль в обеспечении нормальной работы подшипниковых узлов имеет правильное крепление колец подшипников на валу и в корпусе.

Вращающееся кольцо подшипника на валу не должно проворачиваться, так как это ведет к износу посадочных мест. Это достигается гарантированным натягом.

Для предотвращения перемещения под действием осевого усилия кольца закрепляются на валу с помощью специальных устройств.

При наличии больших осевых усилий и высоких угловых скоростей крепление колец подшипников должно быть особенно надежным. Следует помнить, что осевое крепление колец не может обеспечить закрепление их от проворачивания, если не предусмотрена надлежащая посадка.

Материал деталей

Материалы подшипников качения назначаются с учетом высоких требований к твердости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, ШХ20СГ, ШХ20, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твердость колец и роликов обычно HRC 60…65, а у шариков немного больше –  HRC 62… 66, поскольку площадка контактного давления у шарика меньше.

Кольца, ролики или шарики при температурах работы до 100 градусов должны быть термически обработаны до твердости HRC 58-66 в зависимости от марки стали.

Сепараторы изготавливают из листовой стали, латуни, бронзы, дюралюминия, текстолита, полиамидов с различными уплотнителями. Пластмассовые сепараторы уменьшают величину инерционных нагрузок в подшипниках, дают возможность использовать упругие свойства пластмасс при монтаже тел качения.

Сепараторы, изготовленные из самосмазывающегося материала, служат источником твердой смазки. В качестве самосмазывающегося материала часто применяется аман. Его можно использовать для сепараторов обычных и высокоскоростных подшипников, работающих без жидкой смазки, при нормальных и повышенных температурах. Сепараторы из амана должны быть более массивны, чем обычные.

В зависимости от предъявляемых к подшипникам требований кольца и тела качения выпускаются и из других материалов. Так, для обеспечения повышенной коррозионной стойкости ряд подшипников изготовляют из коррозионностойкой стали. Для работы при высокой температуре подшипники выпускают из жаростойких материалов.

Крупногабаритные подшипники для лучшего восприятия ударных нагрузок изготавливаются из цементируемой хромоникелевой стали. Ряд подшипников выпускается из немагнитных и других материалов. Если подшипник используют для работы при повышенной температуре более 100 градусов, то для обеспечения стабилизации размеров детали подшипника подвергаются отпуску при более высокой температуре. При этом твердость деталей несколько снижается в зависимости от температуры отпуска.

Подготовительные операции

Подготовительные операции – проверка качества посадочных мест на валу и в корпусе, проверка исправности и комплектности соединительных и уплотнительных деталей. Посадочные места не должны иметь забоин, рисок, пятен коррозии, трещин, заусенцев. Чистота поверхности – не ниже 6…9 классов. Не допускается кернение посадочных мест, опиловка шеек и установка прокладок. Сопрягаемые с подшипниками поверхности валов и корпусов должны быть тщательно промыты, протёрты, просушены и смазаны тонким слоем смазочного материала. Каналы для подвода смазки должны быть продуты и очищены от стружки и других частиц.

Рабочий инструмент должен быть чистым, тщательно подобранным, без заусенцев. Во избежание повреждений рабочих поверхностей подшипников запрещается вращать подшипники непромытыми. Не разрешается вращать сухие подшипники, не имеющие на рабочих поверхностях масла.

Диаметральные размеры контролируются измерительным инструментом с микрометрическим винтом в нескольких сечениях по длине посадочного места в трёх диаметральных направлениях, расположенных под углом 120° по окружности. После этого вычисляется среднеарифметическое значение размера. Биение заплечиков измеряют индикатором, установленным у торца заплечика, при вращении вала. Геометрические оси сопрягаемых с подшипником деталей должны быть перпендикулярны к торцевым посадочным поверхностям.

В результате деформаций, связанных со старением металла или недостаточной жёсткостью корпуса, возможна деформация наружных колец подшипников в плоскости разъёма. Для устранения дефекта в разъёмных корпусах шаберами выполняют развалку:

а = 10-2 × b; b = 3,6 × 10-2 × (D + 165),

где а, b – ширина и высота развалки, мм.

Валы, особенно при соотношениях длины и наибольшего диаметра более 8, следует проверять на прямолинейность оси (отсутствие изгиба). Проверку проводят при вращении вала в центрах с помощью индикаторов. Увеличение эксцентриситета от сечения к сечению в направлении от края к середине указывает на искривление вала.

Необходимо проверить отклонение соосности всех посадочных поверхностей, расположенных на одной оси. Если подшипники, служащие опорой одного вала, устанавливают в различные (раздельные) корпуса, соосность корпусов обеспечивается с помощью прокладок или других средств в соответствии с требованиями технической документации.

Для подготовки подшипников к монтажу проверяют надписи на упаковке и подшипниках. Распаковывают подшипники непосредственно перед началом работ. Расконсервацию подшипников проводят в горячем (80…90 °С) минеральном масле. Хранить расконсервированные подшипники более двух часов без защиты от коррозии не рекомендуется.

Перед монтажом подшипник следует проверить на соответствие внешнего вида, лёгкости вращения, зазоров требованиям нормативно-технической документации. Визуально у подшипников открытого типа проверяют наличие забоин, следов загрязнений, коррозии, полного комплекта заклёпок, плотности их установки, полного комплекта тел качения, наличие повреждений сепаратора. У подшипников закрытого типа следует проверить, не повреждены ли уплотнения или защитные шайбы.

Лёгкость вращения предварительно смазанного подшипника проверяют вращением от руки наружного кольца. Проверку ведут, удерживая подшипник за внутреннее кольцо в горизонтальном положении. Кольца должны вращаться плавно, без резкого торможения.

Для проверки радиального зазора одно из колец подшипника закрепляют при горизонтальном положении оси и определяют зазор с помощью индикатора, смещая свободное кольцо под действием измерительного усилия в радиальном направлении в два диаметрально противоположные положения. Разница показаний прибора соответствует значению радиального зазора. Проводят три измерения, поворачивая свободное кольцо относительно начального положения оси подшипника. Аналогично проводят измерение осевого зазора, но при вертикальном положении оси подшипника. Закрепляя одно из колец, другое смещают в осевом направлении в два крайние положения под действием измерительного усилия и фиксируют разность показаний индикатора. Радиальные зазоры в радиальных двухрядных сферических роликовых подшипниках и подшипниках с цилиндрическими роликами без бортов на наружных кольцах с диаметром посадочного отверстия свыше 60 мм могут быть измерены с помощью щупа.

При установке на одну посадочную шейку двух подшипников (радиальных: шариковых, роликовых сферических и цилиндрических) разница в радиальных зазорах не должна превышать 0,03 мм, а по внутреннему и наружному диаметрам колец – не более половины поля допуска.

Пробные запуски

После завершения сборочных операций и введения в подшипниковые узлы смазочного материала, проверяют качество монтажа подшипников пробным пуском сборочной единицы на низких оборотах без нагрузки. При этом прослушивают шум вращающихся подшипников с помощью стетоскопа. Прослушивая подшипники, необходимо учитывать особенности узла и природу шума. Кроме дефектов подшипниковых узлов, ненормальный шум может быть вызван зубчатыми передачами, соединительными муфтами. Окончательное заключение о причинах ненормального шума можно сделать после тщательной проверки и прослушивания работы всех деталей механизма.

Другим показателем качества и стабильности работы подшипникового узла является температура. При обычных условиях работы температура подшипника не должна превышать температуру окружающей среды более чем на 30 °С. Причиной повышенной температуры может быть малый зазор в подшипнике, чрезмерно большой натяг, недостаток смазки, увеличенный момент трения вследствие износа рабочих поверхностей подшипника или взаимного перекоса колец. В течение 1…2 дней после смазывания (в том числе повторного) имеет место некоторое повышение температуры подшипника.

< 4.2. Сборка и разборка резьбовых соединений 4.4. Примеры монтажных схем подшипников качения >

голоса

Рейтинг статьи

Общие принципы

Тип подшипников качения

Подшипники качения обычно включают два кольца (рис. «Конструкция подшипников качения» ), сепаратор и элементы каче­ния. Элементы качения направляются сепа­ратором по дорожкам качения. В качестве элементов качения используются шарики, цилиндрические ролики, игольчатые ролики, конические ролики и самоустанавливающиеся ролики. Подшипник качения может смазы­ваться консистентной смазкой. Для защиты от попадания грязи он устанавливается с крыш­ками или прокладками.

В подшипниках качения происходит пере­дача внешнего усилия с одного кольца под­шипника на другое через элементы качения. В зависимости от основного направления нагрузки подшипники подразделяются на радиальные и осевые (упорные).

Конструктивные размеры подшипников качения

Подшипники качения являются готовыми к установке компонентами машин. Их наружные размеры приведены в стандартах DIN 623 и DIN ISO 355.

Для данного диаметра отверстия могут иметь место самые различные значения на­ружного диаметра и ширины подшипника. Для идентификации диапазонов ширины и диаметра подшипников качения использу­ются стандартизованные коды.

Допуски подшипников качения

Допуски подшипников качения стандартизо­ваны в соответствии с классами точности в стандартах ISO 492 и DIN 620. Подшипники качения нормальной точности, т.е с допуском класса РО (также называемого PN) в общем случае отвечают всем требованиями, предъ­являемым машиностроением к качеству под­шипников. Для более строгих требований стандарт предусматривает более высокие классы точности Р6, Р5, Р4, и Р2.

Таблицы допусков можно найти в катало­гах производителей подшипников качения.

Люфт подшипника качения

Люфт не установленного подшипника качения представляет собой расстояние, на которое кольца подшипника можно сдвинуть отно­сительно друг друга. Необходимо различать осевой и радиальный люфты.

Радиальный люфт определен в стандарте DIN 620, Часть 4. Нормальная категория радиаль­ного люфта — СО. В соответствии с условиями эксплуатации, такими как, например, переход­ные режимы и высокие температуры, можно использовать другие категории радиального люфта С1 и С2 (<СО) или СЗ и С4 (>СО).

Осевой люфт определяется радиальным люфтом и геометрией элементов качения и всегда приводится как справочный параметр.

Материалы подшипников качения

Кольца и элементы качения подшипников из­готавливаются из специальной легированной хромом стали (100 Cr6 (DIN 17 230) или 52100 (ASTM А295) с высокой степенью очистки и твердостью HRC 58-65.

Изготавливаются из металлического листа или пластика. Металлический сепаратор в не­больших подшипниках качения как правило изготовлен из листовой стали.

Для изготовления пластмассовых сепара­торов в большинстве случаев используется полиамид 66 (РА66). Этот материал, особенно когда он упрочнен стекловолокном, отличается превосходным сочетанием проч­ности и эластичности. Сепараторы из по­лиамида РА66, упроченного стекловолокном, пригодны для длительной работы при темпе­ратурах до 120 °С.

Для особых условий эксплуатации (очень высоких тепловых нагрузок) в качестве ма­териалов сепараторов применяются другие термопласты и дуропласты.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: