Коробки передач грузовых автомобилей

Управляющие элементы планетарной передачи

Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются ввиду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.

Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.

Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционнных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.

Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.

Устройство автоматической трансмиссии

Автоматическая трансмиссия обеспечивает переключение передач в автоматическом режиме. Это означает, что человеку, управляющему автомобилем, не нужно выжимать сцепление и переключать рычаг КПП. Коробка-автомат была разработана еще в начале XX века, основные принципы ее работы сохранились с того времени.

Классическим вариантом автоматической трансмиссии является гидротрансформаторная КПП, состоящая из следующих узлов:

  • гидротрансформатора;
  • планетарного механизма.

Последний включает в себя следующие детали

  • гидравлический или электронный блок управления АКПП;
  • фрикционную муфту;
  • обгонную муфту;
  • ленточный тормоз;
  • масляный насос.

Гидротрансформатор обеспечивает передачу крутящего момента от силового агрегата и по своей сути заменяет сцепление. Передача крутящего момента осуществляется за счет накопления и использования кинетической энергии жидкости, находящейся внутри корпуса гидротрансформатора. Также он обеспечивает гашение толчков, возникающих при переключении передач, из-за отсутствия жесткой кинематической связи между своими элементами.

Планетарный механизм обеспечивает выбор скорости и передачу крутящего момента от гидротрансформатора к приводам колес. В планетарном механизме осуществляется блокировка одних шестерней и разблокировка других, что определяет выбор передаточного числа. Управление коробкой осуществляет гидравлический или электронный блок управления, собирающий сведения от различных датчиков и определяющий необходимый режим работы.

Классическая автоматизированная трансмиссия имеет множество достоинств: она обеспечивает комфортность управления автомобилем, имеет большой ресурс, зачастую превосходящий механическую трансмиссию, предотвращает банальные ошибки водителя при переключении передач. Разумеется, имеются и минусы: автомат достаточно дорог, поэтому им редко оснащаются автомобили эконом-класса. Также трансмиссия подобного типа увеличивает вес авто, снижает динамику и максимальную скорость, повышает расход топлива и требует тщательного ухода. В случае поломки ремонт автоматической трансмиссии обойдется владельцу авто в немаленькую сумму.

Обнаружение неполадок в работе ПП


Устройство ПП

Несмотря на надежность механизма ПП, при его продолжительной работе могут возникнуть соответствующие поломки в результате износа комплектующих. Основной признак наличия неисправности – это возникновение посторонних шумов. Такое проявление может являться следствием того, что хозяин транспортного средства часто придерживался агрессивного стиля езды. В дополнении к этому, способствует сокращению рабочего срока ПП – если не прогревался двигатель перед началом поездки.

Необходимость в замене сателлит КПП на шестернях дифференциала возникает, если на их поверхности появились трещины или произошла внешняя деформация зубьев. В ряде случаев, вернуть запчасти первоначальный вид представляется возможным, если осуществить шлифовальные работы по поверхности комплектующей детали. Однако при этом дефект должен быть минимальным.

Для осуществления ремонта планетарной КП нужна разборка данного механизма. Доверить данную процедуру стоит специалистам, имеющим соответствующий опыт проведения подобных работ. Полная переборка позволяет точно определить причину неисправности.

Регулировка привода управления танка механизма поворота

  1. Поставить рычаги управления в крайнее нижнее положение.
  2. Отрегулировать тяги колодочных тормозов так, чтобы колодки под действием пружин плотно прижимались к барабанам, а рычаги управления имели свободный ход по рукоятке 25-30 мм. Пружины натягиваются маховичком, поворачивающим вале эксцентриковыми опорами пружин.
  3. Отрегулировать зазор у регулировочных винтов гидравлических прессов, поворачивающих вал управления, с таким расчетом, чтобы, как только будет выбран свободный ход рычагов управления, регулировочные винты прессов уперлись в штоки клапанов.
  4. Продолжать подъем рычагов управления. Как только ролики найдут на выступы профилировочных кулачков, рычаги включения фрикционов должны нажать на штоки клапанов включения гидравлических прессов фрикционов. Момент включения гидравлических прессов фрикционов регулировать регулировочными винтами. При дальнейшем подъеме рычагов должны включаться бортовые тормозы.
  5. При помощи стяжных муфт, находящихся на тягах, отрегулировать бортовые тормозы. Если стяжная муфта полностью затянута, а бортовой тормоз тормозит слабо или совсем не тормозит, необходимо стяжную муфту развинтить настолько, чтобы концы тяги удерживались в муфте резьбой не менее пяти ниток винта, а тягу переставить на следующее отверстие серьги и вновь отрегулировать бортовые тормозы.
  6. Закончив регулировку, запустить двигатель и, поворачивая танк вправо и влево на малых оборотах, проверить действие механизма поворота и, убедившись в его исправности, законтрить регулировочные винты. Необходимо помнить, что при поднятии правого или левого рычага поворота вначале должен выключиться колодочный тормоз; одновременно с ним рычаг гидравлического пресса должен нажать на шток клапана, после чего включается фрикцион (рычаг нажимает на шток клапана); только когда фрикцион будет включен; должен включиться бортовой тормоз.

Бортовая передача

(Рис. 26)

Бортовая передача представляет собой двухступенчатый редуктор с цилиндрическими шестернями. Шестерни и валы размещены в литом картере, который крепится к корпусу болтами. Картер со стороны корпуса закрыт крышкой.

Рис. 26. Бортовая передача:

1 - корпус бортовой передачи, 2 - крышка корпуса; 3 - фланец ведущего вала; 4 - ведущий вал с шестерней; 5-опорные подшипники; 6 - ведомая шестерня первой пары и ведущая второй па ры; 7 - опорные подшипники; 8 - ведомая шестерня второй пары; 9 - ступица шестерня; 10 - ведущий вал звездочки; 11 - опорные подшипники; 12 - установочное кольцо; 13 - уплотняющее устройство; 14 - установочное кольцо; 15 - сальники; 16 - установочная гайка; 17 - кулачок привода плунжерного насоса; 18 - плунжеры насоса; 19 - трубка, подводящая масло к первой паре шестерен; 20 - ступица ведущей звездочки; 21 - внешний диск звездочки; 23 - колпак; 24 - сливное отверстие в картере; 25 - отдушина; 26 - родик, предохраняющий гусеницу от заклинивания.

Масло для смазки бортовой передачи заливается в картер через отверстие в нем, закрываемое пробкой. Сливается масло из картера через отверстие в нижней части его, закрываемое также пробкой. Для обеспечения смазки первой пары шестерен в картере бортовой передачи установлен плунжерный насос, который при движении танка непрерывно подает масло из картера к зубьям первой пары шестерен.

Оглавление
I. Общее устройство
II. Краткая боевая и техническая характеристика
III. Броневой корпус и башня танка
IV. Вооружение
V. Двигатель
VI. Трансмиссия
VII. Ходовая часть (движитель)
VIII. Электрооборудование
IX. Средства связи
X. Приборы управления танком и контрольный щиток
XI. Заправка танка
XII. Запуск двигателя
XIII. Вождение танка
XIV. Техническое обслуживание танка
< Назад   Вперед >

Устройство механической трансмиссии

Механическая трансмиссия — автомобильная трансмиссия, предназначенная для передачи крутящего момента от двигателя внутреннего сгорания к колесам, в которой выбор передачи осуществляется водителем в ручном режиме. Функции механической трансмиссии осуществляются за счет механических устройств, поэтому она и получила такое название.

Принцип работы механической трансмиссии следующий: крутящий момент от силового агрегата через сцепление передается на первичный вал КПП. Сцепление обеспечивает разъединение мотора и трансмиссии для переключения передач без выключения оборотов двигателя. В механической трансмиссии сцепление выжимается водителем путем нажатия на педаль в салоне автомобиля. В момент, когда сцепление выжато, водителем осуществляется выбор передачи и вручную переключается рычаг КПП.

В механической трансмиссии оси валов расположены параллельно, на них расположены шестерни. Пары взаимодействующих шестерен образуют ступени, каждая из них имеет определенное передаточное число, определяемое отношением количества зубьев у выходной и входной шестерен в паре. Количество зубьев зависит от размера самой шестерни: чем больше зубьев — тем больше диаметр шестерни. Первая передача имеет самое большое передаточное число и, соответственно, входная шестерня имеет минимальный размер, а выходная — максимальный.

Передаточное число определяет скорость вращения и крутящий момент, передаваемый от коленчатого вала двигателя. Если передача увеличивает крутящий момент, то она является понижающей, если уменьшает — повышающей. У понижающей передачи скорость вращения шестерен снижается, у повышающей — повышается.

Существуют две основных разновидности механической трансмиссии: двухвальные и трехвальные КПП. У двухвальных крутящий момент передается непосредственно от ведущего вала к ведомому, у трехвальных между ними расположен промежуточный вал, повышающий общий КПД механической трансмиссии и позволяющий реализовать прямую передачу. Также механическая трансмиссия классифицируется по количеству ступеней: 4, 5, 6 и даже 7 на самых продвинутых автомобилях. Наибольшее распространение сейчас имеют 5- и 6-скоростные МКПП.

Механическая трансмиссия довольна проста, надежна и недорога в реализации. Однако ее основной недостаток — усложнение процесса управления автомобилем. Водитель должен полностью контролировать процесс переключения передач, что является достаточно утомительным занятием, особенно в режиме городской езды. Ошибки в переключении грозят перегрузкой двигателя или повреждением сцепления. Поэтому автопроизводители предлагают альтернативный варианты, в которых переключение передач осуществляется без участия водителя.

Применение

Планетарный редуктор Наиболее широкое применение принцип нашёл в планетарных редукторах, автомобильных дифференциалах, бортовых планетарных передачах ведущих мостов тяжёлых автомобилей, кроме того, используется в суммирующих звеньях кинематических схем металлорежущих станков, также в редукторах привода воздушных винтов турбовинтовых двигателей (ТВД) в авиации, также довольно распространены планетарные втулки для велосипедов.

В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.

Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила. Широко применяется данная схема в авиации: в приводе постоянных оборотов электрогенератора планетарный механизм используется для сложения двух различных входных частот вращения с целью получения стабильной выходной. В авиационных электро- и гидроприводах для надёжности используются два мотора, работающие на общий выходной вал через планетарный редуктор, и при отказе одного мотора или цепи управления им работоспособность привода сохраняется, но с двойным уменьшением частоты вращения.

Планетарные передачи также используются в случаях, когда необходимо переменное передаточное отношение (может быть достигнуто торможением, например, водила).

Планетарный механизм поворота

ПМП применяются на гусеничных тракторах и танках для изменения скорости и поворота. В этом случае в трансмиссии к левому и правому ведущим колёсам устанавливается свой планетарный редуктор, коронная шестерня которого приводится от двигателя, с водила передаётся момент на колесо, а солнечная шестерня связана с тормозом той или иной конструкции (как правило, ленточным). Также между коронной шестернёй и выходным валом установлен так называемый блокировочный фрикцион, а на выходном валу (от водила) — ещё один тормоз.

Если тормоз солнечной шестерни и фрикцион выключены, то момент на ведущее колесо трактора не передаётся — корона через сателлиты вращает расторможенную солнечную шестерню, практически не создавая момента на водиле. Для исключения движения трактора в этом случае может быть заторможен основной тормоз (на выходном валу). Если начать затормаживать солнечную шестерню, то сателлиты получат точку опоры и начнут создавать момент на водиле, вращая ведущее колесо трактора. При полностью заторможенной солнечной шестерне ПМП работает как обычный понижающий редуктор. Это первая передача ПМП. При включении блокировочного фрикциона он начнёт передавать момент от двигателя напрямую на водило, минуя редуктор, и при полном включении фрикциона редуктор ПМП будет полностью выведен из работы (заблокирован) — это вторая передача ПМП, работа в качестве прямой передачи.

Таким образом, включение тормоза водила даёт остановку трактора, включение тормоза солнечной шестерни — первую (понижающую) передачу, включение блокировочного фрикциона — вторую.

Коробка перемены передач

(Рис. 22-24)

Танк Т-V «Пантера» имеет семискоростную механическую коробку перемены передач с шестернями, находящимися в постоянном зацеплении. Передачи включаются при помощи кулачковых муфт, снабженных синхронизаторами. Включаются кулачковые муфты при помощи системы рычагов, приводимых в движение рычагом переключения передач. Все валы и шестерни коробки перемены передач находятся в закрытом картере. Смазываются детали коробки перемены передач маслом, подаваемым к трущимся поверхностям шестеренчатым масляным насосом, а также разбрызгиванием.

Пустотелый первый первичный вал 1 (рис. 22), через который проходит вал, приводящий в движение детали поворотного механизма, находится в постоянной связи со вторым первичным валом 2 через шестерни, из которых шестерни 3 и 6 соединены жестко с валами, а 4 и 5 свободно посажены на вторичный рал. На первом первичном валу, кроме жестко сидящей шестерни 3, свободно сидят шестерни: IV передачи 7, V передачи 8, VII передачи 9 и VI передачи 10. На втором первичном валу, кроме жестко сидящей шестерни 6, свободно посажены шестерни II 11 и I 12 передач и шестерня 13 заднего хода. Шестерня заднего хода имеет возможность перемещаться на валу в продольном направлении, так как посажена на шлицах.

На вторичном валу жестко посажены коническая шестерня 14 и шестерни: IV, I передач и заднего хода, V передачи 16, VII передачи 17, VI передачи 18 и III передачи 5, сидящей свободно. На вал 19 заднего хода на шлицах посажена шестерня 20, входящая в зацепление с шестерней 13 второго первичного вала, и свободно посажена шестерня 21, входящая в зацепление с шестерней 15 вторичного вала.

Коробка перемены передач
Рис. 22. Схема коробки перемены передач и механизма поворота танка Рис. 23. Продольный разрез коробки перемены передач
нажмите на изображение, чтобы увеличить

Все валы коробки перемены передач покоятся на шариковых и роликовых подшипниках. Свободно, сидящие на валах шестерни также имеют шариковые подшипники. Передачи включаются при помощи кулачковых муфт. Муфты включения передач от второй и выше снабжены синхронизаторами. Кулачковая муфта (рис. 23) имеет обойму 1, на наружной поверхности обоймы имеется прорез, в который входят лапки рычага, перемещающего обойму. На внутренней поверхности обоймы имеются шлицы. Обойма надета на муфту 2, которая соединена с валом при помощи шлиц. На наружной поверхности муфты имеются шлицы, по которым при перемещениях вдоль оси вала скользит обойма, и стопорное устройство, состоящее из шарика 4 и пружины 5. Боковые поверхности муфты с обеих сторон имеют конуса 3.

При включении передачи обойма, перемещаясь вправо или влево, при помощи стопорного устройства ведет по шлицам вала и муфту, до тех пор пока конус муфты будет плотно прижат к конусу на шестерне; при этом возникающие на поверхности конусов силы трения тормозят шестерню и этим обеспечивают синхронность вращения ее с муфтой. При дальнейшем перемещении наружной обоймы шарик стопора, выходя из гнезда, позволит обойме переместиться еще настолько, что шлицы обоймы войдут в зацепление с зубцами, имеющимися на ступице шестерни, и тогда шестерня, будучи жестко соединена с валом, будет передавать крутящий момент от двигателя на вторичный вал.

Для предотвращения возможности включения одновременно двух передач в коробке перемены передач имеются специальные замки и фиксатор. Шестерни и подшипники коробки перемены передач смазываются в основном разбрызгивающимся маслом, заливаемым в картер коробки перемены передач. Часть шестерен смазывается маслом, подаваемым по трубкам от шестеренчатого маслонасоса. Одновременно со смазкой шестерен коробки перемены передач масло, заливаемое в картер, смазывает и шестерни механизма поворота танка «Пантера». Для заливки масла в картер в верхней крышке картера имеется горловина. Уровень масла проверяется щупом. Схема положений рычага при переключении передач показана на рис. 24.

Рис. 24. Схема положений рычага переключения коробки перемены передач.

Для включения передач заднего хода, а также VI и него хода, а также VI и VII передач необходимо поднять защелку, имеющуюся на рычаге переключения передач. Спидометр приводится во вращение при помощи червяка, посаженного на вторичный вал, при этом трос привода спидометра отводится от колонки, установленной в верхней крышке коробки перемены передач. Крутящий момент от коробки перемены передач к бортовым передачам передается через пару конических шестерен и планетарную систему механизма поворота танка.

Передаточное отношение планетарной передачи


Формула для вычисления передаточного числа

Передаточное число – это отношение числа зубьев ведомой к ведущей шестерни. Оно влияет на эффективность разгона, динамика хода автотранспорта на проезжей части. От чего зависит передаточное отношение? На данный параметр влияют такие факторы, как общее количество зубьев, какой элемент в данной системе закреплен.

С помощью калькулятора представляется возможным осуществить точный расчет планетарных передач. Для определения передаточного соотношения необходимо частоту вращения ведущего вала поделить на частоту вращения ведомого.

Угловая скорость звеньев ПП находится в зависимости от скорости вращения всех остальных имеющихся звеньев, относящихся к трансмиссии. Чтобы определить соотношение между угловыми скоростями зубчатых колес, сателлитов целесообразно применить формулу Виллиса.

Дифференциал: как устроен, функции, виды

Необходимость в механизме возникла вместе с развитием автомобилестроения. При повороте внутреннее и наружное колесо вращаются с разной скоростью. Выровнять их удалось Фердинанду Порше, который первым предложил применить дифференциал с ограниченным проскальзыванием. Современные приспособления сообщают колесам различные угловые скорости, передавая от двигателя к колесам крутящий момент и понижая передачу.

Конструкция представляет собой планетарный редуктор. Основные элементы в нем:

  • оси;
  • сателлиты;
  • полуосевые шестерни (солнца);
  • подшипники;
  • сальник;
  • корпус (чаша).

Тип дифференциала зависит от вида зубчатой передачи — червячной, конической или цилиндрической. Первый из них универсальный, подходит для монтажа между колесами и осями. В авто с передним приводом он находится в КПП. Количество устанавливаемых в машине дифференциалов различное — от одного до трех. Существуют также симметричные и несимметричные модификации.

Планируя проводить ремонт, все эти нюансы следует учитывать, чтобы купить запчасть с нужными техническими характеристиками. При малейших сомнениях лучше проконсультироваться у опытных механиков в автосервисе или продавцов магазина.

Роботизированная трансмиссия

Роботизированная трансмиссия — еще один вариант трансмиссии, позволяющий переключать передачи в автоматическом режиме и позволяющий избавиться от педали сцепления в салоне авто.

В большинстве случаев роботизированная трансмиссия является однодисковой с одним сцеплением, в качестве альтернативы предлагается двухдисковая (преселективная) — с двумя параллельными механическими коробками и двумя сцеплениями. В качестве экзотического варианта создана и трехдисковая роботизированная коробка с тремя параллельными механическими коробками и тремя сцеплениями.

Роботизированная КПП основана на работе классической механической КПП, однако переключение передач производится не вручную, а благодаря сервоприводам, управляемым электроникой. Один сервопривод выключает и включает сцепление, второй физически перемещает шестеренки в коробке передач. Сервоприводы могут быть электрическими (более доступный вариант, встречающийся на автомобилях эконом-класса) или гидравлическими, обеспечивающими более плавное переключение передач и сближающими робот с классическим автоматом. Такой вариант встречается на более дорогих автомобилях.

Принцип работы роботизированной трансмиссии с одним сцеплением (однодисковой) следующий. Крутящий момент передается на ведущий вал, который передает его на ведомый, соединенный приводом с колесами. Силовой агрегат и ведущий вал разделены сцеплением, переключением которого занимается сервопривод под управлением электроники. При разрыве сцепления второй сервопривод перемещает синхронизаторы коробки передач таким же образом, как это делает водитель рычагом КПП на механике. Однако для такой системы характерны разрывы в мощности и потери в тяге в момент переключения.

Для решения этой проблемы была разработана преселективная роботизированная трансмиссия (DCT) с двумя дисками (валами) и двумя сцеплениями для четных и нечетных передач. Когда автомобиль едет на нечетной передаче, второе сцепление подготавливает переключение на четную передачу и т. д. Благодаря этому исчезают разрывы в тяге при переключении передач, которое осуществляется в рекордно быстрый период времени (время отзыва — до 0,2 секунды и даже меньше).

В целом роботизированная трансмиссия имеет свои плюсы по сравнению с автоматом — она дешевле, занимает меньше места в подкапотном пространстве, меньше весит, достаточно экономична (на уровне механической трансмиссии). Также большинство роботов позволяет переключать передачи и в ручном режиме.

Минусы робота следующие — простые однодисковые роботы с электрическими сервоприводами не обеспечивают плавность переключения передач. Роботы с двумя сцеплениями и с гидравлическими сервоприводами достаточно дороги, недостаточно надежны и имеют сложности при ремонте. В нередких случаев при поломке приходится менять коробку передач целиком.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ремонт авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector