Тяговые аккумуляторные батареи
Как можно понять из названия тяговых АКБ, предназначены оны для того, чтобы тянуть. Но не в буквальном смысле слова, как лошадь, например. Аккумуляторные батареи этого типа используются лишь для питания силовых установок, а те уже непосредственно выполняют полезную работу. Тянут, поднимают, вращают, освещают, обогревают и даже развлекают. Любая из этих работ требует такого источника питания, который мог бы длительное время отдавать энергию умеренными порциями, и не терять своей работоспособности в результате глубоких циклических разрядов.
Тяговые аккумуляторы: устройство
Первое, в чём можно заметить отличие тягового аккумулятора от обычного — устройство. Конструктивно это стандартные свинцовые пластины (электроды), помещённые в электролитную среду. Рабочие детали упакованы в герметичном корпусе из диэлектрического материала. Наружу выведены две клеммы — положительная и отрицательная.
Электролит в тяговых АКБ может быть как наливным, так и гелеобразным. В последнее время особой популярностью пользуются так называемые AGM аккумуляторы, в которых жидким электролитом пропитаны пористые маты, плотно контактирующие со свинцовыми пластинами.
Сферы применения силовых батарей
Применяются тяговые АКБ в тех сферах, где требуется стабильное и продолжительное питание умеренной мощности. Самый наглядный пример — различная движущаяся техника и системы альтернативной энергетики:
- электромобили;
- небольшие лодки;
- электровелосипеды;
- машинки для езды по полям для гольфа;
- погрузчики;
- ветряные и солнечные системы генерации энергии.
Особенно распространены тяговые аккумуляторы в специальной технике, применяемой для погрузки и перевозки грузов. Благодаря отсутствию выхлопных газов она может эксплуатироваться в закрытых помещениях. Плавательные средства на электротяге тоже имеют свои преимущества — экологичность, отсутствие шума и вибрации.
Характеристики аккумуляторных батарей
Обозначение на аккумуляторной батарее
Стартерные аккумуляторные батареи, изготавливаемые в Германии, маркируются с указанием номинального напряжения, номинальной емкости и испытательного тока разряда в холодном состоянии (например, DIN EN 50342). Стартерные аккумуляторные батареи, изготавливаемые в Германии, идентифицируются девятизначным номером (ETN) согласно стандарту EN 50342. Этот номер содержит информацию о номинальном напряжении, номинальной емкости и низкотемпературном испытательном токе.
Например: 555 059 042 означает: 12 В (первая цифра кода); 55 А-ч; специальный тип конструкции (059); низкотемпературный испытательный ток 420 А.
Емкость аккумуляторной батарею
Емкость — это время, в течение которого аккумуляторная батарея способна отдавать определенный ток при заданных условиях. Емкость уменьшается по мере того, как увеличивается разрядный ток и уменьшается температура электролита.
Номинальная емкость АКБ
Стандарт DIN EN 50342 определяет номинальную емкость K20 как заряд, который аккумуляторная батарея способна отдать в течение 20 ч до напряжения отсечки 10,5 В (1,75 В/элемент) при заданном постоянном разрядном токе I20 (I20=K20 /20 ч) при 25 °С. Номинальная емкость аккумуляторной батареи зависит от количества используемого активного материала (масса положительных пластин, масса отрицательных пластин, электролит) и не влияет на количество пластин.
Низкотемпературный испытательный ток
Низкотемпературный испытательный ток Iсс (ранее IКР) показывает способность аккумуляторной батареи выдавать ток при низких температурах. Согласно стандарту DIN EN 50342, напряжение на выводах аккумуляторной батареи при Iсс и -18°С через 10 с после начала разряда должно составлять не менее 7,5 В (1,25 В на элемент). Более подробная информация о времени разрядки приведена в стандарте DIN EN 50342. Краткосрочное поведение аккумуляторной батареи вовремя разряда при Icc, главным образом, определяется числом пластин, их площадью поверхности, а также промежутком между пластинами и материалом сепаратора.
Еще одной переменной, характеризующей пусковую реакцию, является внутреннее сопротивление Ri. К полностью заряженной аккумуляторной батарее (12 В) при -18°С применимо уравнение: Ri < 4000/Icc (мОм), где Icc указывается в амперах. Внутреннее сопротивление аккумуляторной батареи и другие сопротивления в контуре стартера определяют частоту проворачивания двигателя.
Отличия между тяговыми и стартёрными аккумуляторами
Что же касается отличий, то их гораздо больше, чем сходств. К тому же, они более существенные и заметные даже невооружённым глазом:
- Параметры свинцовых пластин — у стартёрных они тоньше, и их количественно больше при одинаковых ёмкостях АКБ. У тяговых же аккумуляторных батарей электроды массивные, и их меньше визуально (если заглянуть внутрь корпуса). За счёт этого они лучше переносят глубокие разряды и дольше не рассыпаются.
- Пиковые нагрузки — стартёрные АКБ для них просто созданы, тогда как тяговые аналоги физически не могут отдавать большие токи. Площадь пластин у них сравнительно маленькая, а из-за этого менее интенсивно проходят электрохимические реакции. Но не следует думать, что тяговые батареи совсем немощные в плане пиковых нагрузок. Это не совсем так. На кое-что и они способны.
- Чувствительность к глубоким разрядам — у стартёрных аккумуляторов крайне низкая. Некоторые модели уже после двух-трёх разрядов в ноль теряют до половины номинальной ёмкости. На сегодня больше всего этим недостатком «славятся» так называемые кальциевые АКБ. Тяговые же аккумуляторы к глубоким разрядам более стойкие, и не теряют ресурс в результате такой эксплуатации.
- Количество циклов заряда-разряда — тяговые АКБ в этом плане существенно выигрывают у стартёрных. Более того, последние вообще не рекомендуется часто разряжать более, чем на 30%, так как они быстро подвергаются сульфатации, теряют ёмкость и способность отдавать большие пусковые токи.
- Габариты и вес — при одинаковых номинальных ёмкостях тяговые аккумуляторы заметно больше, чем стартёрные. Это связано и с упомянутой выше толщиной пластин, и с более массивными корпусами.
- Стоимость — сравнивать по этому критерию сложно, так как оба варианта есть и в дешёвом, и в дорогом исполнении. Но кое-какая тенденция, всё же, просматривается. Тяговые — дороже.
Ещё по Интернету гуляет байка, что тяговые АКБ лучше «приспособлены» к высоким и отрицательным температурам окружающей среды. На самом деле разница в этом плане если и есть, то очень маленькая. Тяговые АКБ наравне со стартёрными могут замерзать на морозе в разряженном состоянии, а также терять много электролита из-за перегрева. Кроме того, при низких температурах они значительно меньше накапливают и отдают энергии, чем при оптимальных +20°C. Это надо учитывать, например, если на той же лодке с электротягой вы затеяли дальний заплыв ранней весной.
Стартёрные аккумуляторные батареи
Название стартёрных АКБ тоже указывает на их непосредственное предназначение. Задача аккумулятора этого типа — запитать стартер для запуска двигателя внутреннего сгорания. Роль эта хоть и кратковременная (3—8 секунд), но из-за большой мощности требует отдачи большого тока. Например, чтобы запустить средний по объёму бензиновый двигатель внутреннего сгорания, нужен стартер мощностью полтора-два киловатта. При номинальном напряжении АКБ 12 вольт для выдачи такой мощности требуется ток силой 100—150 ампер. А если стартер плохо крутит, то вдвое, а то и втрое больше.
Устройство стартёрного аккумулятора только лишь по конфигурации имеет сходства с тяговыми аналогами. В них имеются те же свинцовые пластины, контактирующие с электролитом. Есть диэлектрический герметичный корпус и выведенные наружу две клеммы — «плюс» и «минус». Однако, в отличие от тяговых АКБ, в стартёрных пластины намного тоньше. Это делается для того, чтобы увеличить площадь поверхности активной массы, участвующей в электрохимических процессах внутри аккумулятора. А чем больше площадь, тем выше токи можно «выжать» из АКБ.
Применяются стартёрные батареи только там, где эти самые большие пусковые токи нужны. То есть, в различного рода технике, оснащённой двигателями внутреннего сгорания. Это и легковые автомобили, и грузовые, и мотоциклы, и тракторы, и комбайны.
Устройство аккумуляторной батареи
Компоненты аккумуляторной батареи
Автомобильные аккумуляторные батареи напряжением 12 В содержат шесть последовательно соединенных и отделенных перегородками гальванических элементов в полипропиленовом корпусе (рис. «Необслуживаемая стартерная аккумуляторная батарея» ). Каждый гальванический элемент включает наборы положительных и отрицательных пластин. Эти наборы, в свою очередь, состоят из пластин (свинцовая решетка и активная масса) и микропористого материала (сепаратор), который изолирует пластины противоположных полярностей. Сепараторы образуют карманы, в которые погружаются пластины. Электролит представляет собой раствор серной кислоты, который проникает в поры пластин и сепараторы, а также в пустоты гальванических элементов. Полюсные выводы, соединительные элементы гальванических элементов и перемычки пластин выполнены из свинца; щели в перегородках межэлементных соединений тщательно уплотнены. Для обеспечения герметичной связи цельной крышки с корпусом аккумуляторной батареи используется процесс горячей опрессовки. На стандартных аккумуляторных батареях каждый элемент закрывается собственной пробкой с вентиляционным отверстием. Вентиляционные отверстия с закрученными пробками позволяют образующимся при зарядке аккумуляторной батареи газам улетучиваться. У необслуживаемых аккумуляторных батарей, выполненных в герметичном исполнении, нет пробок заливных горловин, однако они также имеют вентиляционные отверстия.
Материал решетчатых пластин аккумуляторной батареи
Пластины аккумуляторной батареи состоят из свинцовых решеток и активного материала, которым покрываются свинцовые решетки во время производственного процесса. Активный материал положительной пластины содержит пористый диоксид свинца (РbO2, оранжево-коричневого цвета), а отрицательной пластины — чистый свинец в виде «губчатого свинца» (РЬ, серого-зеленого цвета). Другими словами, чистый свинец также имеет крайне пористую форму.
По разным причинам (жидкотекучесть, обработка, механическая прочность, стойкость к коррозии), для решеток используется сплав свинца с сурьмой. Стандартные способы изготовления решеток — отливка, прокатка и штамповка.
Свинцово-сурьмяный сплав (PbSb)
Сурьма добавляется для придания твердости. Однако в течение срока службы аккумуляторной батареи из-за коррозии положительной решетки сурьма все больше отделяется. Она мигрирует к отрицательной пластине, проходя через электролит и сепараторы, и «отравляет» ее, образуя локальные гальванические пары. Эти гальванические пары повышают саморазряд отрицательной пластины и уменьшают напряжение газовыделения. Все это вызывает повышенный расход воды при перезарядке, что способствует высвобождению сурьмы. Этот механизм самовозбуждения приводит к постоянному снижению мощности на протяжении всего срока службы аккумуляторной батареи. Она становится неспособной достичь необходимого заряда, и электролит приходится часто проверять.
Свинцово-кальциевый сплав (РbСа)
Кальций используется для повышения твердости отрицательных пластин. Кальций электрохимически неактивен при потенциальных условиях, существующих в свинцовых аккумуляторных батареях. Это означает, что предотвращается «отравление» отрицательной пластины и саморазряд.
Еще одним преимуществом является высокое напряжение газообразования, стабильное в течение срока службы, и связанный с этим расход воды (меньший по сравнению со сплавом свинца с сурьмой).
Свинцово-кальциевые сплавы с добавлением серебра (РЬСаAg)
Помимо снижения содержания кальция и увеличения содержания олова этот сплав также имеет определенный процент серебра (Ag). Он имеет более тонкую структуру решетки и показал себя крайне стойким даже при высоких температурах, ускоряющих коррозию. Это сказывается, когда происходит деструктивный перезаряд при высокой плотности электролита и (что в равной степени нежелательно) в перерывах в эксплуатации при высокой плотности электролита.
Свинцово-кальциево-оловянные сплавы (PbCaSn)
Этот сплав используется для решеток, изготавливаемых непрерывной прокаткой и штамповкой, и содержит гораздо больше олова, чем РЬСаAg. Он отличается крайне высокой стойкостью к коррозии при небольшой массе решетки.
Можно ли использовать стартёрный аккумулятор вместо тягового
В теории заменять стартёрную АКБ на тяговую, или наоборот, нельзя. Во-первых, пиковой мощности тягового аккумулятора может не хватить для стабильной прокрутки стартера. Во-вторых, стартёрные батареи нецелесообразно использовать там, где они будут долго и часто пребывать в полуразряженном состоянии. Скорый износ в виде потери ёмкости сделает такую эксплуатацию крайне невыгодной.
Кроме всего прочего, тяговые АКБ больше по размерам, чем стартёрные той же ёмкости. Соответственно, могут возникнуть трудности даже с тем, чтобы установить аккумулятор на штатное место под капотом автомобиля.
Тем не менее, есть масса примеров, когда эти две технологии являются взаимозаменяемыми, и довольно неплохо себя проявляют, так сказать, не в своей тарелке. Хороший пример — солнечные или ветровые электростанции гаражных масштабов. В таких системах лучше, конечно, использовать тяговые аккумуляторы. Однако при грамотном подходе к вопросу заряжать от альтернативных источников можно и стартёрные АКБ.
В завершение вернёмся немного к автомобилям. Тяговый аккумулятор вместо стартёрного использовать, может быть, и не стоит. Но зато они часто приспосабливаются на роль вспомогательных источников энергии. То есть, под капотом свою непосредственную роль выполняет штатный стартёрный аккумулятор, а в багажник устанавливается дополнительно силовой. От него при необходимости запитываются такие потребители, как холодильник, инвертор, кипятильник и прочие мобильные принадлежности, используемые вдали от цивилизации.