Устройство системы зажигания
На рисунке представлена система зажигания, которая применяется в бензиновых автомобилях.
Рассмотрим более подробно устройство и схему системы зажигания авто.
- источник питания (аккумуляторная батарея и автомобильный генератор);
- накопитель энергии;
- выключатель зажигания;
- блок управления накоплением энергии (микропроцессорный блок управления, прерыватель, транзисторный коммутатор);
- блок распределения энергии по цилиндрам (электронный блок управления, механический распределитель);
- свечи зажигания;
- высоковольтные провода.
Источником питания для системы зажигания выступает аккумуляторная батарея непосредственно в момент запуска мотора, и генератор во время работы двигателя.
Накопитель применяется для аккумуляции и преобразования достаточного количества энергии, которая используется на создание электрического разряда в электродах свечи зажигания. Современная система зажигания автомобиля может применять емкостной или индуктивный накопитель.
Индуктивный накопитель представляет собой катушку зажигания (автотрансформатор), первичная обмотка у которой, подключается к полюсу плюсовому, а минусовой полюс подключается через устройство разрыва. В процессе работы устройства разрыва, возьмем для примера кулачки зажигания, в первичной обмотке наводится напряжение самоиндукции. В это время во вторичной обмотке создается повышенное напряжение, необходимое для пробоя на свече воздушного зазора.
Емкостной накопитель представлен в виде емкости, которая заряжается при помощи повышенного напряжения. В нужный момент отдает всю энергию на свечу зажигания.
Блок управления накоплением энергии предназначен для определения начального момента накопления энергии, а также момента его передачи на свечу зажигания.
Выключатель зажигания – электрический или механический контактный блок для подачи в систему зажигания напряжения. Выключатель зажигания многим автомобилистам известен, как «замок зажигания». Ему отводится две функции: подача напряжения непосредственно на втягивающее реле стартера и подача напряжения в бортовую сеть автомобиля.
Устройство распределения по цилиндрам применяется для подачи в определенный момент энергии к свечам зажигания от накопителя. Данный элемент системы зажигания двигателя состоит из блока управления, коммутатора и распределителя.
Автомобилистам наиболее известно это устройство, как «трамблер», который является распределителем зажигания. Трамблер распределяет по проводам высокое напряжение на свечи цилиндров. Как правило, в распределителе присутствует кулачковый механизм.
Свеча зажигания – устройство с двумя электродами, которые находятся друг от друга на определенном расстоянии от 0.15 до 0,25 мм. Свеча состоит из фарфорового изолятора, который плотно насажен на металлическую резьбу, электродом служит центральный проводник, а вторым электродом выступает резьба.
Высоковольтные провода представляют собой одножильные кабеля с усиленной изоляцией. Проводник может быть выполнен в виде спирали, что поможет избавиться от помех в радиодиапазоне.
Принцип работы системы зажигания
Разделим работу системы зажигания на следующие этапы:
- аккумуляция электрической энергии;
- трансформация (преобразование) энергии;
- разделение по свечам зажигания энергии;
- образование искры;
- разжигание топливно-воздушной смеси.
На примере классической системы зажигания рассмотрим принцип работы. В процессе вращения вала привода трамблера приводятся в действие кулачки, подаваемые на обмотку первичную автотрансформатора напряжение 12 вольт.
В момент подачи напряжения на трансформатор, наводится ЭДС самоиндукции в обмотке и вследствие этого, возникает высокое напряжение до 30000 вольт на вторичной обмотке. После чего в распределитель зажигания (бегунок) подается высокое напряжение, который в момент вращения подает напряжение на свечи. 30000 вольт достаточно, чтобы пробить воздушный зазор свечи искровым зарядом.
Система зажигания автомобиля должна быть идеально отрегулирована. Если будет позднее или раннее зажигание, то двигатель внутреннего сгорания может потерять свою мощность или появится повышенная детонация, а это очень не понравится вашей шестерке (ВАЗ 2106).
Возможные неисправности бесконтактного зажигания и их диагностика
Распространенные поломки и методы диагностирования и ремонта:
- Затрудненный запуск и перебои при работе двигателя как на холостом ходу, так и на повышенных оборотах. Следует проверить напряжение на выходах датчика Холла, которое должно находиться в пределах 0,4-11 В, при отсутствии сигнала сенсор подлежит замене.
- Отсутствие искрообразования в одном или нескольких цилиндрах. Для проверки необходимо вывернуть свечи и убедиться в наличии искры между контактами. При нарушении работы следует проверить состояние контактов и удалить следы влаги. Если не работают все свечи, то необходимо осмотреть датчик Холла и коммутатор, а затем поменять поврежденные детали.
- Нарушение работы системы возможно из-за повреждения обмоток катушки. Для проверки подсоединяют тестовый прибор к выводам. Следует учесть, что перебои могут начинаться при повышении температуры в моторном отсеке. Если владелец не имеет навыков обслуживания автомобилей, то рекомендуют обратиться в сервис.
Система зажигания без распределителя
Самой «продвинутой» и действительно бесконтактной является электронная система зажигания, которая не имеет механического распределителя, так как его функции выполняет бортовой компьютер. Он «определяет» момент искрообразования в соответствующем цилиндре по сигналам, поступающим с сенсоров положения распределительного и коленчатого валов. Вместо одной высоковольтной катушки в системе используют несколько (по одной на каждый цилиндр двигателя). Это позволяет создать более мощную искру, так как компьютер в зависимости от частоты вращения двигателя четко «определяет» время, необходимое для накопления энергии.
На заметку! Еще более инновационной считают систему зажигания, в которой катушки вмонтированы непосредственно в колпачки, одеваемые на свечи. Это позволяет избавиться от высоковольтных проводов, что в свою очередь снижает потери электроэнергии, а также повышает надежность и эффективность процесса искрообразования.
Принцип действия
Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов. Пока контур прерывателя замкнут, ток проходит только по первичной обмотке
Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.
Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.
В этот же момент созданный импульс направляется по проводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.
Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.
Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.
Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.
В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.
Схема работы показана ниже.
Втягивающее реле стартера – для чего оно необходимо и как работает
Здравствуйте, уважаемые автолюбители! Прежде, чем любой автомобиль, подчиняясь желаниям владельца, выедет из гаража и поедет из пункта «А» в пункт «Б», его необходимо завести. Большинство современных автопользователей, которых автолюбителями можно назвать с большой натяжкой, доверяют ремонт и обслуживание своего авто специалистам сервисных центров.
Плохого в этом ничего нет, если не учитывать, тот факт, что автомобили эксплуатируют бездумно, неаккуратно. Уважающий себя водитель, даже если не принимает лично участие в ремонте машины, должен знать её устройство, основные признаки неисправностей, порядок их устранения. Это необходимо хотя бы для того, чтобы не выглядеть глупо в разговоре с автослесарем и не попасться в руки мошенников от ремонта.
Так как движение автомобиля начинается с запуска мотора, то в первую очередь, необходимо освоить устройство системы пуска. Одно из самых уязвимых мест – это втягивающее реле стартера. Об этой детали слышали все, но принцип её работы и устройство понимают не многие.
Сравнительно небольшой узел играет ключевую роль в запуске мотора. Если в случае поломки иных частей эксплуатация автомобиля возможна, то сломанное реле стартера полностью парализует автомобиль.
Тяговое реле стартера – для чего оно необходимо
Втягивающее реле стартера
Прежде, чем приступить к изучению устройства втягивающего реле, необходимо уяснить, что за работу стартера отвечает два реле, которые не следует путать. Первое – реле включения стартера, находится в моторном отсеке.
В зависимости от марки и модели автомашины оно может быть выполнено в самостоятельном корпусе или монтироваться в общий блок вместе с другими реле.
Второе – это втягивающее реле, которое установлено непосредственно на стартере и выполняет следующие функции:
- перераспределение электроэнергии между электромагнитом реле и мотором стартера;
- синхронизация работы узлов стартера при запуске мотора;
- подача шестерни бедикса до зацепления с зубами венца маховика;
- возврат шестерни в исходное положение после пуска.
В литературе можно встретить чуть измененной название одного и того же реле – тяговое реле стартера. В народно-автомобильном обиходе это устройство называют просто – «втягивающее».
Для того, чтобы мотор запустился, необходимо принудительно вращать коленчатый вал до того момента, как в камерах сгорания не начнёт воспламеняться топливная смесь. В исправном моторе для этого необходима «секунда» времени.
Задача втягивающего реле заключается в том, чтобы синхронизировать работу стартера, обеспечить зацепление рабочих частей шестерён и убрать бендикс от маховика после запуска двигателя.
Устройство втягивающего реле стартера и принцип его работы
Тяговое реле стартера находится над стартером в прочном соединении с ним. При необходимости оно достаточно просто снимается, но сделать это можно только на демонтированном стартере. Разные производители предлагают реле в двух вариантах: разборное, которое при необходимости можно подвергнуть диагностике, ревизии и ремонту, и неразборное, которое в случае поломки меняется целиком.
Основными частями реле являются:
- корпус;
- якорь;
- магнит с обмотками (втягивающая и удерживающая);
- возвратная пружина;
- контакты.
После поворота ключа в замке зажигания, в катушке возникает электромагнитное поле на втягивающей обмотке и якорь, притягиваясь, перемещается в сердечник, который посредством рычага вводит в зацепление с венцом маховика рабочую шестерню бендикса.
Как только сердечник достигает крайнего положения, «втягивающий» стартера замыкает пару контактов, которые называют «пятаками». В этот момент включается удерживающая обмотка и подаётся ток на обмотку мотора, который начинает вращать вал и маховик, находящийся в зацеплении с шестернёй.
С пуском мотора контакты в замке зажигания размыкаются, подача электроэнергии на стартер прекращается, и возвратная пружина возвращает якорь в исходное положение, а вместе с ним и шестерню с обгонной муфтой. Вот, собственно, такой принцип работы втягивающего реле стартера.
Неисправности трамблёра, их признаки и причины
С учётом того, что конструкции трамблёров контактного и бесконтактного типа почти не отличаются, их неисправности также идентичны. К наиболее распространённым поломкам прерывателя-распределителя можно отнести:
- выход из строя контактов крышки;
- подгорание или износ бегунка;
- изменение расстояния между контактами прерывателя (только для контактных трамблёров);
- поломка датчика Холла (только для бесконтактных устройств);
- выход из строя конденсатора;
- повреждение или износ подшипника подвижной пластины.
Рассмотрим неисправности более детально в контексте их признаков и причин.
Выход из строя контактов крышки
Учитывая, что контакты крышки изготовлены из сравнительно мягких материалов, их износ неизбежен. Кроме этого, они нередко подгорают, ведь через них проходит ток в несколько десятков тысяч вольт.
Чем больше износ контактов, тем больше вероятность их подгорания
Признаками износа или подгорания контактов крышки являются:
- «троение» силовой установки;
- усложнённый запуск двигателя;
- снижение мощностных характеристик;
- нестабильный холостой ход.
Подгорание или износ контакта бегунка
С бегунком ситуация аналогична. И хотя его раздающий контакт выполнен из металла, со временем изнашивается и он. Износ приводит к увеличению зазора между контактами бегунка и крышки, что, в свою очередь, провоцирует образование электрической искры. В итоге мы наблюдаем те же симптомы нарушения работы двигателя.
Бегунок также подвергается износу с течением времени
Изменение величины зазора между контактами
Межконтактный зазор в прерывателе трамблёра ВАЗ 2101 должен составлять 0,35–0,45 мм. Если он выходит из этого диапазона, возникают сбои в системе зажигания, что сказывается на работе силового агрегата: двигатель не развивает необходимой мощности, автомобиль дёргается, расход горючего увеличивается. Проблемы с зазором в прерывателе возникают довольно часто. Владельцам автомобилей с контактной системой зажигания приходится регулировать контакты как минимум раз в месяц. Основная причина подобных неполадок — постоянные механические нагрузки, которым подвержен прерыватель.
При изменении установленного зазора нарушается процесс искрообразования
Поломка датчика Холла
При возникновении проблем с электромагнитным датчиком в работе мотора также начинаются перебои: он запускается с трудом, периодически глохнет, автомобиль дёргается при разгоне, обороты плавают. Если же датчик вообще сломается, запустить двигатель вам вряд ли удастся. Из строя он выходит нечасто. Основным признаком его «смерти» является отсутствие напряжения на центральном проводе высокого напряжения, выходящем из катушки зажигания.
Если датчик выйдет из строя, двигатель не запустится
Неисправность конденсатора
Что касается конденсатора, то он также выходит из строя редко. Но когда это происходит, начинают подгорать контакты прерывателя. Чем это заканчивается, вы уже знаете.
При «пробитом» конденсаторе контакты прерывателя подгорают
Поломка подшипника
Подшипник служит для обеспечения равномерного вращения подвижной пластины вокруг вала. В случае его неисправности (закусывания, заклинивания, возникновения люфта) регуляторы угла опережения зажигания работать не будут. Это может стать причиной детонации, увеличения расхода топлива, перегрева силовой установки. Определить, исправен ли подшипник подвижной пластины, можно только после разборки трамблёра.
При неисправности подшипника возникают перебои в регулировании УОЗ
Общий принцип работы
Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.
При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.
Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.
Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.
Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.
Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).
В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.
Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.
Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:
- Магнитного поля;
- Уровня интенсивности падения тока в первичной обмотке.
Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.
Принципиальная схема контактной системы зажигания показана ниже.
Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.
Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).
Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.
Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.
Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.
К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.
К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.
Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).
В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).
В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.
Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:
- Формы, энергии и времени появления искры;
- Количества искр на определенной площади;
- Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.
ПРИНЦИП РАБОТЫ СИСТЕМЫ ЗАЖИГАНИЯ
Рассмотрим подробнее распределитель зажигания, чтобы определить технологию направления электрического импульса на каждый цилиндр отдельно. Сняв крышку трамблера можно увидеть вал с пластиной в центре и расположенные по кругу медные контакты. Эта пластина и есть бегунок, он обычно пластиковый или текстолитовый и в нем стоит предохранитель. Медный наконечник с одного края бегунка по очереди касается медных контактов, раздавая электрические разряды на провода к цилиндрам в необходимое время такта работы двигателя. Пока бегунок совершает свое движение от одного контакта к другому, в цилиндрах готовится новая порция горючей смеси для воспламенения.
Чтобы исключить постоянную подачу тока, в трамблер устанавливается прерыватель – контактная группа. Кулачки расположены на валу эксцентрично, и при вращении замыкают и размыкают электрическую сеть.
Необходимым условием правильной работы и эффективного сгорания смеси является произошедшее строго в определенный момент самовозгорание. Процесс возгорания очень сложен с технической точки зрения, так как в цилиндрах образуется большое количество дуговых разрядов, которые зависят от оборотов двигателя. Разряды должны быть так же равны определенным значениям: от 0,2 мдж и выше (в зависимости от топливной смеси). В случае недостаточной энергии, смесь не загорится, и появятся перебои в работе двигателя, он может не запуститься или заглохнуть. Работа катализатора так же зависит от исправности системы зажигания двигателя. Если система работает с перебоями, остатки топлива будут попадать в катализатор и догорать там, что приведет к перегреву и прогоранию металла катализатора как снаружи, так и выходу из строя внутренних перегородок. Прогоревший внутри катализатор не сможет выполнять свои функции и потребуется замена.
как выставить по меткам, видео установки привода трамблера
Устройство системы зажигания ГАЗ-53
Для того, чтобы ремонтировать и настраивать СЗ на ГАЗ-53, необходимо знать, как она устроена.
На данных грузовиках установлена бесконтактная СЗ, которая состоит из следующих компонент:
- источник питания – АКБ;
- коммутатор;
- провода;
- дополнительное реле;
- катушка;
- прерыватель-распределитель;
- указатель тока;
- резисторный элемент;
- замок зажигания (выключатель).
Зная устройство СЗ, схему подключения ЗЗ и других ее компонентов, а также функции, которые выполняет каждый элемент, можно по признакам определить неполадки и устранить их причину. Все компоненты СЗ можно распределить на группы по выполняемым задачам.
Для нормальной работы ДВС необходимо выполнение следующих условий:
- мощная искра;
- соответствие между образованием искры и работой силового агрегата;
- отсутствие пропусков образования искры.
Вся система электронного зажигания представляет собой две цепи: первичную и вторичную.
В первичную входят такие элементы:
- АКБ с многожильными кабелями большого сечения;
- выключатель, подающий питание в цепь;
- первичная обмотка;
- прерыватель распределитель, находящийся в трамблере;
- коммутаторное устройство, обеспечивающее стабильность работы;
- сопротивление необходимое для успешного запуска двигателя и разгрузки КЗ, исключающее ее перегрев.
Вторичная цепь включает в себя:
- распределитель;
- провода для подачи высоковольтного тока;
- свечи.
Когда первичная цепь получает питание, в прерывателе возникает магнитное поле. Вращения трамблера прерывают ток в этом месте, что приводит к исчезновению магнитного поля. В этот момент на вторичной обмотке возникает сигнал, который переходит на цилиндры.
Структура и функции БСЗ
При включении зажигания (2) подается напряжение питания на первичную обмотку катушки зажигания (3). Через первичную обмотку проходит ток, как только коммутатор (4) получит сигнал с датчика зажигания (5), ток первичной обмотки прерывается. Клемма 1 катушки зажигания по средством коммутатора соединяется с массой. Во вторичной обмотке индуцируется высокое напряжение более 20 кВ.
Вторичное напряжение системы зажигания через клемму 4 катушки зажигания передается на датчик-распределитель на соответствующий цилиндр и свечу зажигания.
Блок управления определяет частоту вращения коленчатого вала (сигналы датчика) и на ее основании управляет временем накопления тока первичной обмотки катушки зажигания (длительностью открытого состояния выходного транзистора или тиристора системы зажигания) и его величиной. В соответствии с частотой вращения и напряжением аккумуляторной батареи, незадолго до появления искры зажигания устанавливается заданное значение первичного тока, то есть при увеличении частоты вращения длительность протекания тока увеличивается так же, как при уменьшении напряжения аккумуляторной батареи.
При включенном зажигании и неработающем двигателе (отсутствие сигнала датчика) через некоторое время (как правило, через одну секунду) отключается ток первичной обмотки катушки зажигания. Как только блок управления получит сигнал датчика (например, при запуске), он снова переходит в рабочее состояние.
Для адаптации момента зажигания к разным состояниям нагрузки регулировка осуществляется так же, как и в контактных системах зажигания, механическим способом посредством мембранного механизма вакуумного регулятора, а также центробежного регулятора. В результате сигнал датчика (и вместе с ним момент зажигания) изменяется в зависимости от оборотов и нагрузке двигателя.
Индуктивное формирование сигнала в бесконтактной транзисторной системе зажигания накоплением энергии в индуктивности
В результате вращения ротора датчика управляющих импульсов изменяется магнитное поле и в индукционной обмотке (статоре) создается представленное на рисунке а, б переменное напряжение. При этом напряжение увеличивается по мере приближения зубцов ротора к зубцам статора. Положительный полупериод напряжения достигает своего максимального значения, когда расстояние между зубцами статора и ротора минимальное. При увеличении расстояния магнитный поток резко меняет свое направление и напряжение становится отрицательным.
В этот момент времени (tz) в результате прерывания первинного тока коммутатором инициируется процесс зажигания.
Количество зубцов ротора и статора в большинстве случаев соответствует количеству цилиндров. В этом случае ротор вращается с уменьшенной вдове частотой вращения коленчатого вала. Пиковое напряжение (± U) при низкой частоте вращения составляет прибл. 0,5 В, при высокой — прибл. до 100 В.
Момент зажигания можно проконтролировать только при работающем двигателе, поскольку без вращения ротора изменение магнитного поля не происходит и в результате не создается сигнал.
Выводы
Все системы, используемые для воспламенения топливной смеси, хороши в определенных областях машиностроения. Все не лишены своих недостатков. Не всегда нужно создавать сложную и высоконадежную систему, иногда гораздо дешевле использовать простые и более дешевые. Нет необходимости устанавливать дорогую систему зажигания на автомобиль, который по своей стоимости гораздо ниже, чем остальные в его классе. Такими действиями можно только поднять его стоимость, но качество, к сожалению, останется прежним. Зачем что-то менять, если работа системы зажигания показала только лучшие результаты на многих тестах?